lithium-chloride has been researched along with Reperfusion-Injury* in 12 studies
12 other study(ies) available for lithium-chloride and Reperfusion-Injury
Article | Year |
---|---|
Lithium chloride promotes neural functional recovery after local cerebral ischaemia injury in rats through Wnt signalling pathway activation.
Lithium chloride (LiCl) has a significant neuroprotective effect in cerebral ischaemia. However, to date, there is a paucity of evidence on the role of LiCl in neural restoration after brain ischaemia and the signalling pathways involved remain unclear.. Therefore, to address this gap, the middle cerebral artery occlusion (MCAO) rat model was used to simulate human ischaemia stroke. Male Sprague-Dawley rats were given MCAO for 90 min followed by reperfusion, and Dickkopf-1 (DKK1, 5.0 μg/kg) was administered half an hour before MCAO. Rats were then treated with hypodermic injection of LiCl (2.0 mmol/kg) twice a day for 1 week. After treatment, cognitive impairment was assessed by the Morris water maze test. Neurological deficit score, 2,3,5-triphenyl tetrazolium chloride staining, brain water content, and histopathology were used to evaluate brain damage. Enzyme-linked immunosorbent assay was used to measure oxidative stress damage and inflammatory cytokines. Apoptosis of the hippocampal neurons was tested by western blot. The key factors of Wnt signalling pathway in the ischaemic penumbra were detected by immunofluorescence staining and quantitative real-time polymerase chain reaction.. Current experimental results showed that LiCl treatment significantly improved the impaired spatial learning and memory ability, suppressed oxidative stress, inflammatory reaction, and neuron apoptosis accompanied by attenuating neuronal damage, which subsequently decreased the brain oedema, infarct volume and neurological deficit. Furthermore, the treatment of LiCl activated Wnt signalling pathway. Interestingly, the aforementioned effects of LiCl treatment were markedly reversed by administration of DKK1, an inhibitor of Wnt signalling pathway.. These results indicate that LiCl exhibits neuroprotective effects in focal cerebral ischaemia by Wnt signalling pathway activation, and it might have latent clinical application for the prevention and treatment of ischaemic stroke. Topics: Animals; Brain Injuries; Brain Ischemia; Humans; Infarction, Middle Cerebral Artery; Ischemia; Lithium Chloride; Male; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stroke | 2023 |
Quercetin and lithium chloride potentiate the protective effects of carvedilol against renal ischemia-reperfusion injury in high-fructose, high-fat diet-fed Swiss albino mice independent of renal lipid signaling.
Renal ischemia-reperfusion injury (R-IRI) is the main cause of acute renal failure. Carvedilol has been shown to protect against R-IRI. However, the underlying mechanisms are still not completely clarified. This study aimed to investigate the role of lipid signaling in mediating carvedilol protective effects against R-IRI in insulin-resistant mice by using two different lipid signaling modulators, quercetin and lithium chloride (LiCl). Mice were fed high-fructose, high-fat diet (HFrHFD) for 16 weeks to induce insulin resistance. At the end of feeding period, mice were randomly distributed into five groups; Sham, R-IRI, Carvedilol (20 mg/kg, i.p.), Carvedilol + Quercetin (10 mg/kg, i.p.), Carvedilol + LiCl (200 mg/kg, i.p.). R-IRI was performed by applying 30 min of unilateral renal ischemia followed by one hour of reperfusion. Quercetin and LiCl were administered 30 min before carvedilol administration and carvedilol was administered 30 min before ischemia. Changes in kidney function tests, histopathology, fibrosis area, lipid signaling, inflammatory, apoptosis and oxidative stress markers in the kidney were measured. Results showed that R-IRI decreased kidney function, impaired renal tissue integrity, modulated lipid signaling and increased renal inflammation, apoptosis and oxidative stress. Carvedilol treatment decreased the detrimental effects induced by R-IRI. In addition, pre-injection of both quercetin and LiCl potentiated the reno-protective effects of carvedilol against R-IRI independent of changes in lipid mediators like phosphatidyl inositol 4,5 bisphosphate (PIP2) and diacylglycerol (DAG). In conclusion, quercetin and LiCl potentiate the protective effects of carvedilol against R-IRI in HFrHFD-fed mice by reducing inflammation and oxidative stress independent of lipid signaling. Topics: Animals; Apoptosis; Carvedilol; Cytoprotection; Diet, High-Fat; Drug Synergism; Fructose; Kidney; Lithium Chloride; Male; Malondialdehyde; Mice; Oxidative Stress; Quercetin; Reperfusion Injury; Signal Transduction | 2021 |
Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice.
Although upregulation of endothelial Wnt/β-catenin signaling may be used to treat blood-brain barrier (BBB) breakdown caused by cerebral ischemia/reperfusion injury, no agents based on this mechanism are available clinically. Lithium, a medication used for treating bipolar mood disorders, upregulates Wnt/β-catenin signaling, but whether lithium alleviates BBB breakdown after ischemic stroke by upregulating endothelial Wnt/β-catenin signaling is unclear. Here, we evaluated the BBB-protective effect of lithium in adult mice with 1-h middle cerebral artery occlusion and 48-h reperfusion (MCAO/R) by determining neurological outcomes, BBB function and related molecular components. Furthermore, we assessed the effect and dependence of lithium on Wnt/β-catenin signaling in brain microvascular endothelial cells in cell culture and in mice with conditional endothelial knockout of Wnt7 co-receptor Gpr124. Our data show that lithium treatment (3 mmol/kg) significantly decreased infarct volume (34.1 ± 1.8% versus 58.3 ± 2.8% in vehicle controls, P < 0.0001) and improved neurological outcomes of mice following MCAO/R. Importantly, lithium significantly increased BBB integrity shown by reduction of Evans blue leakage (by 45.7%, P = 0.0064) and blood IgG extravasation (by 65.8%, P < 0.0001) into infarcted brain tissue. Mechanistically, lithium upregulated the activity of endothelial Wnt/β-catenin signaling in vivo and in vitro, increased the protein levels of tight junctions (Claudin-5 and ZO-1), and reduced MMP-9 expression. Furthermore, the protective effect of lithium on cerebral damage and BBB integrity was abolished in endothelial Gpr124 knockout mice, indicating the protection of lithium on BBB was mainly dependent on the Gpr124-mediated endothelial Wnt/β-catenin signaling. Taken together, our findings indicate that lithium may serve as a therapeutic candidate for treating the BBB breakdown in the early stage of ischemic stroke following reperfusion therapy. Topics: Adjuvants, Immunologic; Animals; beta Catenin; Blood-Brain Barrier; Brain Ischemia; Endothelial Cells; Lithium Chloride; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Reperfusion Injury; Up-Regulation; Wnt Signaling Pathway | 2021 |
Induction of autophagy reduces ischemia/reperfusion injury in steatotic rat livers.
Steatotic livers are particularly vulnerable to ischemia/reperfusion injury (IRI). One of the reasons is an underlying impairment of autophagy. Autophagy is regulated by glycogen synthase kinase 3b (GSK3b) and extracellular signal-regulated kinases (ERK1/2) pathways. Both of them are target proteins of a cell-protective drug, lithium chloride. Lithium chloride treatment reduces IRI in many organs including liver. Therefore, we aimed to investigate the effect of lithium chloride treatment on autophagy induction in steatotic rat livers. We also wanted to evaluate the related cell-protective effects on the enhanced hepatic IRI.. After inducing hepatic steatosis, rats were injected with lithium chloride or normal saline for 3 d before being subjected to 70% selective warm ischemia for 60 min. After reperfusion, rats were observed for 30 min, 6, 24, and 48 h.. Lithium chloride appeared to protect hepatocytes from IRI via its ability to induce autophagy by modulation of both GSK3b and ERK1/2 pathways. Hepatic damage was significantly decreased in the treatment group as indicated by a reduced inflammatory response, less apoptosis, less necrosis, and lower liver enzyme levels.. Simultaneous modulation of GSK3b and ERK1/2 pathways might be an interesting strategy to reduce IRI in steatotic livers with an impairment of autophagy. Topics: Animals; Autophagy; Biomarkers; Fatty Liver; Hepatocytes; Lithium Chloride; Liver; Male; Protective Agents; Rats; Rats, Inbred Lew; Reperfusion Injury | 2017 |
Protective effects of lithium chloride treatment on repeated cerebral ischemia-reperfusion injury in mice.
Lithium is a renowned pharmacological treatment for mood disorders. Recent studies suggest that lithium chloride (LiCl) performs neuroprotective effects on cerebrovascular diseases. The present study is to investigate the protective effects of LiCl treatment on the hippocampus of mice with repeated cerebral ischemia-reperfusion (IR). Mice were subjected to IR through repeated bilateral common carotid artery occlusion. LiCl (2 mmol/kg) was administered daily postoperative until the mice were sacrificed. Swimming time was prolonged and error count increased in the model group through learning and memory tests. Pathological changes such as reduction in cell count and obvious pyknosis were seen in haematoxylin-eosin staining, and apoptosis was detected by TUNEL staining in hippocampal CA1 regions in the model group. The model animals exhibited more phospho-Akt Ser473 and phospho-GSK3β Ser9 than the sham group when measured by Western blot. LiCl treatment mitigated the prolonged swimming time and the increased error count compared with NaCl-treated group and improved the pathological changes. Meanwhile, LiCl further up-regulated phospho-Akt Ser473 and phospho-GSK3β Ser9 expression. The highest level of diversity was at 4 weeks postoperative. Therefore, repeated IR can severely damage the hippocampus and decrease the learning and memory functions in mice. Changes in the Akt and GSK3β protein activity were involved in the IR process. LiCl treatment exerted a neuroprotective effect on learning and memory by potentiating the Akt/GSK3β cell-signaling pathway. Topics: Animals; Apoptosis; Brain Ischemia; CA1 Region, Hippocampal; Disease Models, Animal; Lithium Chloride; Male; Maze Learning; Memory; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; Random Allocation; Reperfusion Injury; Swimming; Time Factors; Treatment Outcome | 2015 |
Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus.
Lithium has been reported to have neuroprotective effects, but the preventive and treated role on cognition impairment and the underlying mechanisms have not been determined. In the present study, C57Bl/6 mice were subjected to repeated bilateral common carotid artery occlusion to induce the learning and memory deficits. 2 mmol/kg or 5 mmol/kg of lithium chloride (LiCl) was injected intraperitoneally per day before (for 7 days) or post (for 28 days) the operation. This repeated cerebral ischemia-reperfusion (IR) induced dynamic overexpression of ratio of Bcl-2/Bax and BDNF in hippocampus of mice. LiCl pretreatment and treatment significantly decreased the escape latency and increased the percentage of time that the mice spent in the target quadrant in Morris water maze. 2 mmol/kg LiCl evidently reversed the morphologic changes, up-regulated the survival neuron count and increased the BDNF gene and protein expression. 5 mmol/kg pre-LiCl significantly increased IR-stimulated reduce of Bcl-2/Bax and p-CREB/CREB. These results described suggest that pre-Li and Li treatment may induce a pronounced prevention on cognitive impairment. These effects may relay on the inhibition of apoptosis and increasing BDNF and p-CREB expression. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Brain-Derived Neurotrophic Factor; Carotid Artery Diseases; Cell Survival; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Hippocampus; Learning Disabilities; Lithium Chloride; Male; Maze Learning; Memory Disorders; Mice, Inbred C57BL; Neurons; Nootropic Agents; Proto-Oncogene Proteins c-bcl-2; Random Allocation; Reperfusion Injury; Spatial Memory | 2015 |
Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats.
Lithium has long been widely used in the treatment of bipolar mood disorders. Recent studies have demonstrated that lithium is able to decrease ischemia/reperfusion (I/R) injury in the brain, kidneys, and heart. Because lithium may act on a number of stress and survival pathways, it is of great interest to explore this compound also in the setting of liver I/R injury. In this study, we aimed to evaluate the effects of lithium in a model of liver I/R injury in rats. Chronic treatment with lithium (2 mmol/kg for 3 days before ischemia) decreased I/R injury, whereas acute treatment with a single dose of lithium (2 mmol/kg 1 hour before ischemia) did not confer any protection in a partial hepatic I/R model. Furthermore, rats subjected to chronic lithium treatment had a significantly better survival rate (60%) than saline-treated rats (27%) in a total hepatic I/R survival model. Chronic lithium treatment protected against liver I/R injury, as indicated by lower serum aminotransferase levels, fewer I/R-associated histopathological changes, lower hepatic inflammatory cytokine levels, less neutrophil infiltration, and lower hepatic high-mobility group box expression and serum levels. The mechanism of action of lithium appears to involve its ability to inhibit glycogen synthase kinase 3β activation, modulate mitogen-activated protein kinase activation, inhibit hepatic apoptosis, and induce autophagy. On the basis of these data, we conclude that lithium treatment may be a simple and applicable preconditioning intervention for protecting against liver I/R injury. Topics: Animals; Apoptosis; Cytokines; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; HMGB Proteins; Inflammation; Lithium Chloride; Liver; Liver Diseases; Male; Mitogen-Activated Protein Kinases; Neutrophils; Rats; Rats, Inbred Lew; Reperfusion Injury; Signal Transduction; Time Factors; Transaminases | 2013 |
Gsk-3β inhibitors mimic the cardioprotection mediated by ischemic pre- and postconditioning in hypertensive rats.
The aim of this study was to examine the effects of GSK-3 β inhibitors compared with PRE and POS in spontaneously hypertensive rats (SHR). Isolated hearts were submitted to the following protocols: IC: 45 min global ischemia (GI) and 1-hour reperfusion (R); PRE: a cycle of 5 min GI and 10 minutes of R prior to 45 min GI; POS: three cycles of 30 sec GI/30 sec R at the start of R. Other hearts received lithium chloride (LiCl) or indirubin-3'-monoxime,5-iodo-(IMI) as GSK-3 β inhibitors. All interventions reduced the infarct size observed in IC group. The expressions of P-GSK-3 β and P-Akt decreased in IC and were restored after PRE, POS, and GSK-3 β inhibitors treatments. An increase of cytosolic MnSOD activity and lipid peroxidation and a decrease of GSH content observed in IC hearts were attenuated in PRE, POS, and LiCl or IMI treatments. An increase of P-GSK-3 β /VDAC physical association and a partial recovery of mitochondrial permeability were also detected after interventions. These data show that, in SHR hearts, GSK-3 β inhibitors mimic the cardioprotection afforded by PRE and POS and suggest that a decrease in mitochondrial permeability mediated by P-GSK-3 β /VDAC interaction is a crucial event. Topics: Animals; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heart; Humans; Hypertension; Indoles; Ischemic Postconditioning; Ischemic Preconditioning; Lipid Peroxidation; Lithium Chloride; Organ Culture Techniques; Oximes; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Reperfusion Injury | 2013 |
Protective effects of acute lithium preconditioning against renal ischemia/reperfusion injury in rat: role of nitric oxide and cyclooxygenase systems.
Delayed graft function secondary to ischemia/reperfusion injury has been shown to be associated with increased rate of allograft failure following kidney transplantation. Previously, we have shown that chronic lithium pretreatment protects kidney against ischemia/reperfusion injury. In the present study we aimed to examine the effects of acute lithium administration on the renal ischemia/reperfusion injury in rat. Ischemia/reperfusion injury was induced by clamping left renal pedicle for 60 min, two weeks after right nephrectomy. The mechanism of lithium-mediated renoprotection was explored by combined use of lithium and nitro-l-arginine methyl ester (L-NAME) (non-selective nitric oxide synthase inhibitor) and/or indomethacin (non-selective cyclooxygenase pathway inhibitor). Lithium-treated animals were given 40 mg/kg lithium chloride intraperitoneally, 30 min before ischemia. To investigate the role of nitric oxide and cyclooxygenase pathways in renoprotective effect of lithium, L-NAME and/or indomethacin were administered before lithium injection. Serum creatinine, blood urea nitrogen, and renal histology were assessed after 24h of reperfusion. Lithium preconditioning significantly reduced creatinine and blood urea nitrogen (P<0.001) and improved renal histology. Administration of L-NAME completely reversed renoprotective effect of lithium. In contrast indomethacin significantly potentiated the lithium renoprotection. Moreover, co-administration of L-NAME and indomethacin completely abolished the protective effects of lithium. The results show that a single dose of lithium significantly improves renal function following ischemia/reperfusion injury. In conclusion, the ability of lithium to enhance renal tissue tolerance against ischemia/reperfusion injury suggests a potential clinical application in the setting of kidney transplantation. However, more detailed investigations are required before any definite conclusion. Topics: Animals; Antimanic Agents; Disease Models, Animal; Indomethacin; Ischemic Preconditioning; Kidney; Lithium Chloride; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Prostaglandin-Endoperoxide Synthases; Protective Agents; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2012 |
Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3β/NF-κB-mediated protective signaling in mice.
Lithium (an inhibitor of GSK-3β activity) has beneficial effects on ischemia/reperfusion (I/R) injury in the central nervous system, heart and kidney. However, the role of lithium in hepatic I/R injury is unknown. The aim of this study was to assess the effects of lithium on hepatic I/R injury in a mouse model of partial hepatic I/R. Previous studies showed that lithium chloride (LiCl) can phosphorylate residue Ser9, inhibit GSK-3β activity, and improve I/R injury in other organs. In the present study, mice were pretreated with either vehicle or LiCl, which had similar effects on GSK-3β activity. Surprisingly, treatment with LiCl significantly exacerbated hepatic I/R injury, which was determined by serological and histological analyses. Acute and chronic LiCl treatment caused serious damage in hepatic I/R injury, including increased apoptosis and oxidative stress. To gain insight into the mechanism involved in this damage, the activity of nuclear factor-κB (NF-κB) (GSK-3β can regulate the transcriptional complex of NF-κB) was analyzed, which revealed that LiCl treatment significantly down-regulated the activity of NF-κB. The NF-κB-mediated protective genes were then further evaluated, including anti-apoptotic genes (RAF2, cIAP 2, Bfl-1 and cFLIP) and the antioxidant gene MnSOD. The expression of these protective genes was obviously suppressed compared with the vehicle group. Taken together, these findings show that lithium exacerbates hepatic I/R injury by suppressing the expression of GSK-3β/NF-κB-mediated protective genes. Topics: Animals; Apoptosis; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspase 3; Disease Models, Animal; Gene Expression Regulation; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Inhibitor of Apoptosis Proteins; Lithium Chloride; Liver; Male; Mice; Mice, Inbred C57BL; Minor Histocompatibility Antigens; NF-kappa B; Oxidative Stress; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Reperfusion Injury; RNA, Messenger; Serine; Signal Transduction; Superoxide Dismutase; Time Factors; TNF Receptor-Associated Factor 2 | 2012 |
Roles of phospho-GSK-3β in myocardial protection afforded by activation of the mitochondrial K ATP channel.
The aim of this study was to determine the roles of glycogen synthase kinase-3β (GSK-3β) in cardioprotection by activation of the mitochondrial ATP-sensitive K(+) channel (mK(ATP) channel). In isolated rat hearts, an mK(ATP) activator, diazoxide, and a GSK-3β inhibitor, SB216763, similarly limited infarct size and the combination of these agents did not afford further protection. The protection by pre-ischemic treatment with diazoxide was abolished by inhibition of protein kinase C-ε (PKC-ε) or phosphatidylinositol-3-kinase (PI3K) upon reperfusion. Infusion of a GSK-3β inhibitor (LiCl), but not diazoxide, during reperfusion limited infarct size. Inhibition of PKC-ε or PI3K did not affect the protection by LiCl. Diazoxide infusion alone did not induce GSK-3β phosphorylation. However, diazoxide infusion before ischemia increased mitochondrial phospho-GSK-3β level and reduced cyclophilin-D (CypD) binding to adenine nucleotide translocase (ANT) at 10 min after reperfusion. This diazoxide-induced GSK-3β phosphorylation was inhibited by blockade of the mK(ATP) channel before ischemia and by blockade of PKC-ε, PI3K or the adenosine A2b receptor at the time of reperfusion. Inhibition of GSK-3β by LiCl during reperfusion increased phospho-GSK-3β but had no significant effect on CypD-ANT binding. These results suggest that GSK-3β phosphorylation at the time of reperfusion by a PKC-ε, PI3K- and A2b receptor-dependent mechanism contributes to prevention of myocardial necrosis by pre-ischemic activation of the mK(ATP) channel. Inhibition of CypD-ANT interaction may contribute to mK(ATP)-induced myocardial protection, though it is not the sole mechanism of phospho-GSK-3β-mediated cytoprotection. Topics: Adenosine A2 Receptor Antagonists; Animals; Cyclophilins; Diazoxide; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hemodynamics; Immunoblotting; In Vitro Techniques; Ion Channel Gating; Lithium Chloride; Mitochondrial ADP, ATP Translocases; Myocardial Infarction; Myocardium; Peptidyl-Prolyl Isomerase F; Perfusion; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Potassium Channel Blockers; Potassium Channels; Protein Binding; Protein Kinase C-epsilon; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2010 |
Chronic lithium treatment protects the rat kidney against ischemia/reperfusion injury: the role of nitric oxide and cyclooxygenase pathways.
Ischemia/reperfusion injury is a major problem in renal transplantation. Several evidences represent lithium preconditioning effect against ischemia/reperfusion injury in various tissues. In this study our aim was to investigate the protective effect of chronic lithium administration on renal ischemia/reperfusion injury in rats. Ischemia/reperfusion injury was induced by clamping left renal pedicle for 60 min, 2 weeks after right nephrectomy. Lithium-treated animals received lithium-chloride in drinking water for 30days. In order to investigate the role of nitric oxide (NO) and cyclooxygenase (COX) pathways in renoprotective effect of lithium, N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME, NO synthase inhibitor) and indomethacin (COX inhibitor) were used, respectively. Serum creatinine, blood urea nitrogen and renal histology were assessed 24h after inducing ischemia/reperfusion injury. Dimercaptosuccinic acid scan was also performed 48 h following operation. Chronic lithium treatment in ischemia/reperfusion injury groups significantly decreased creatinine (1.09±0.16 mg/dl), blood urea nitrogen (59.0±13.38 mg/dl), histological damage (7.83%±4.02%) and improved cortical function compared with non-lithium treated animals (4.45±0.44, 176.66±12.24 mg/dl and 83.5%±3.5%, respectively) (P<0.001). Either L-NAME or indomethacin administration partially reversed the protective effect of lithium, while simultaneous blockade of NO and COX pathways completely abolished lithium renoprotective effect. Our results indicate that lithium ameliorates renal ischemia/reperfusion injury through NO and/or COX pathways. We propose that lithium pre-treatment as a simple and practical intervention to boost the renal viability and function after ischemia/reperfusion injury may be promising in the setting of transplantation. Topics: Animals; Antimanic Agents; Blood Urea Nitrogen; Creatinine; Cyclooxygenase Inhibitors; Kidney; Lithium Chloride; Male; Nitric Oxide; Prostaglandin-Endoperoxide Synthases; Protective Agents; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Time Factors | 2010 |