lithium-chloride and Ischemia

lithium-chloride has been researched along with Ischemia* in 4 studies

Other Studies

4 other study(ies) available for lithium-chloride and Ischemia

ArticleYear
Lithium chloride promotes neural functional recovery after local cerebral ischaemia injury in rats through Wnt signalling pathway activation.
    Folia morphologica, 2023, Volume: 82, Issue:3

    Lithium chloride (LiCl) has a significant neuroprotective effect in cerebral ischaemia. However, to date, there is a paucity of evidence on the role of LiCl in neural restoration after brain ischaemia and the signalling pathways involved remain unclear.. Therefore, to address this gap, the middle cerebral artery occlusion (MCAO) rat model was used to simulate human ischaemia stroke. Male Sprague-Dawley rats were given MCAO for 90 min followed by reperfusion, and Dickkopf-1 (DKK1, 5.0 μg/kg) was administered half an hour before MCAO. Rats were then treated with hypodermic injection of LiCl (2.0 mmol/kg) twice a day for 1 week. After treatment, cognitive impairment was assessed by the Morris water maze test. Neurological deficit score, 2,3,5-triphenyl tetrazolium chloride staining, brain water content, and histopathology were used to evaluate brain damage. Enzyme-linked immunosorbent assay was used to measure oxidative stress damage and inflammatory cytokines. Apoptosis of the hippocampal neurons was tested by western blot. The key factors of Wnt signalling pathway in the ischaemic penumbra were detected by immunofluorescence staining and quantitative real-time polymerase chain reaction.. Current experimental results showed that LiCl treatment significantly improved the impaired spatial learning and memory ability, suppressed oxidative stress, inflammatory reaction, and neuron apoptosis accompanied by attenuating neuronal damage, which subsequently decreased the brain oedema, infarct volume and neurological deficit. Furthermore, the treatment of LiCl activated Wnt signalling pathway. Interestingly, the aforementioned effects of LiCl treatment were markedly reversed by administration of DKK1, an inhibitor of Wnt signalling pathway.. These results indicate that LiCl exhibits neuroprotective effects in focal cerebral ischaemia by Wnt signalling pathway activation, and it might have latent clinical application for the prevention and treatment of ischaemic stroke.

    Topics: Animals; Brain Injuries; Brain Ischemia; Humans; Infarction, Middle Cerebral Artery; Ischemia; Lithium Chloride; Male; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stroke

2023
Effect of renal ischemia on urinary excretion of lithium in rats.
    Biopharmaceutics & drug disposition, 2018, Volume: 39, Issue:9

    Lithium, administered to patients with bipolar disorders, is mainly excreted in the urine, and tubular reabsorption is involved. This study characterized the renal excretion of lithium in rats subjected to renal ischemia for 60 min or 90 min. After intravenous injection of lithium chloride at 25 mg/kg, the pharmacokinetic parameters of lithium were determined. In sham-operated rats, the renal clearance of lithium was calculated to be 1.49 ml/min/kg, and its ratio to creatinine clearance (fractional excretion) was 43.4%. Renal ischemia inhibited the renal excretion of lithium, and did not affect its fractional excretion. The urinary pH of rats with renal ischemia for 90 min was significantly higher than those of the other groups, and the linear regression with the fractional excretion of lithium in rats with renal ischemia showed a moderate correlation (r = 0.650, p = 0.00193). This study demonstrated the effect of renal ischemia on the renal excretion of lithium in rats. It was suggested that not only glomerular filtration but also the reabsorption of lithium was impaired by renal ischemia.

    Topics: Animals; Antimanic Agents; Disease Models, Animal; Hydrogen-Ion Concentration; Injections, Intravenous; Ischemia; Kidney; Linear Models; Lithium Chloride; Male; Rats; Rats, Wistar; Time Factors

2018
Ischemia and status epilepitcus result in enhanced phosphorylation of calcium and calmodulin-stimulated protein kinase II on threonine 253.
    Brain research, 2008, Jul-07, Volume: 1218

    Ca2+-stimulated protein kinase II (CaMKII) is critically involved in the regulation of synaptic function and is implicated in the neuropathology associated with ischemia and status epilepticus (SE). The activity and localization of CaMKII is regulated by multi-site phosphorylation. In the present study we investigated the effects of global ischemia followed by reperfusion and of SE on the phosphorylation of CaMKII on T253 in rat forebrains and compared this to the phosphorylation of T286. Both ischemia and SE resulted in marked increases in the phosphorylation of T253, and this was particularly marked in the postsynaptic density (PSD). Phosphorylation of T286 decreased rapidly towards basal levels following ischemia whereas phosphorylation of T253 remained elevated for between 1 and 6 h before decreasing to control values. Following SE, phosphorylation of T253 remained elevated for between 1 and 3 h before decreasing to control levels. In contrast, phosphorylation of T286 remained elevated for at least 24 h following the termination of SE. Total CaMKII associated with PSDs transiently increased 10 min following ischemia, but only several hours following SE. The results demonstrate that phoshorylation of CaMKII on T253 is enhanced following both ischemia/reperfusion and SE and indicate that the phosphorylation of T253 and T286 are differentially regulated.

    Topics: Animals; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Disease Models, Animal; Ischemia; Lithium Chloride; Male; Phosphorylation; Pilocarpine; Prosencephalon; Rats; Rats, Wistar; Status Epilepticus; Synaptosomes; Threonine

2008
In utero hypoxic ischemia decreases the cholinergic agonist-stimulated poly-phosphoinositide turnover in the developing rat brain.
    Neurochemical research, 1995, Volume: 20, Issue:12

    Perinatal hypoxic-ischemic (HI) insult is known to cause cellular and molecular disturbances leading to functional and behavioral abnormalities during brain development. In this study, we examined the effects of an in utero HI insult on poly-phosphoinositide turnover in vivo in the cerebrum and cerebellum as well as cholinergic-stimulated turnover in cortical slices from developing rat brain. In utero HI treatment was carried out by clamping the uterine blood vessels of near-term fetuses for 5, 10 and 15 min followed by resuscitation of the newborn pups. The in vivo protocol for examining poly-PI signaling activity in 2 week-old pup brain involved intracerebral injection of [3H]inositol for 16 hr and subsequent intraperitoneal injection with lithium (8 meq/kg) for 4 hr prior to decapitation. In the control pups, lithium elicited a 2.6 fold increase in labeled inositol phosphate (IP) in the cerebrum as compared to a 1.3 fold increase in the cerebellum. In utero HI insult (5 to 15 min) resulted in a small increase in labeled IP in the cerebrum but not in the cerebellum. Carbachol stimulation of poly-PI turnover was examined in brain slices prelabeled with [3H]inositol in vivo. Incubation of the prelabeled slices with carbachol in the presence of LiCl (10 mM) resulted in a time-, dose- and age-dependent increase in labeled IP. Brain slices from 2 week-old pups that experienced in utero HI-treatment for 10 and 15 min (but not 5 min) showed a significant decrease in carbachol-stimulation of labeled IP as compared with control pups. These results indicate the effects of in utero HI on the choninergic-stimulated poly-PI signaling pathway and its implication on related functional deficits in the developing brain.

    Topics: Animals; Brain; Carbachol; Constriction; Female; Hypoxia; Inositol; Ischemia; Lithium Chloride; Parasympathomimetics; Phosphatidylinositol Phosphates; Pregnancy; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Sodium Chloride; Tritium; Uterus

1995