lithium-chloride and Hypoxia

lithium-chloride has been researched along with Hypoxia* in 11 studies

Other Studies

11 other study(ies) available for lithium-chloride and Hypoxia

ArticleYear
SATB1 downregulation induced by oxidative stress participates in trophoblast invasion by regulating β-catenin.
    Biology of reproduction, 2018, 06-01, Volume: 98, Issue:6

    Preeclampsia (PE) is characterized by abnormal placentation in the early stages of pregnancy. Adequate migration and invasion of trophoblasts into the uterine wall and spiral arteries to form a functional maternal-fetal interface are pivotal for normal placentation, but the exact mechanism remains unclear. Growing evidence has revealed that special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-associating DNA) (SATB1) is a tumor promoter that participates in cancer cell migration and invasion. However, the expression and function of SATB1 in trophoblasts is unknown. Here, we characterize the stimulatory effect of SATB1 on the migration and invasion of trophoblasts and identify the regulatory events and downstream signaling components. Downregulated SATB1 was detected in PE placentae and villous explants cultured under hypoxia/reoxygenation (H/R) conditions. H/R-treated trophoblasts with lower SATB1 levels exhibited weaker invasive and growth capacities, whereas upregulation of the SATB1 level with recombinant SATB1 restored these impairments. This restoration was especially apparent with the sumoylation-deficient SATB1 variant, which contained a mutated site that blocked sumoylation. Moreover, the elevated concentration of SATB1 also increased the expression of β-catenin, which is involved in human placental trophoblast invasion and differentiation is downregulated in PE. However, a specific activator, namely, lithium chloride (LiCl), increased β-catenin expression but had no evident influence on SATB1 expression. Furthermore, upregulated SATB1 failed to restore trophoblast function when Wnt/β-catenin was suppressed by dickkopf (Xenopus laevis) homolog 1, dickkopf 1 homolog (Xenopus laevis) (DKK1). Together, these data show that SATB1expression in the human placenta is affected by oxidative stress and might regulate the migration and invasion of trophoblasts via β-catenin signaling.

    Topics: beta Catenin; Cell Movement; Down-Regulation; Female; Humans; Hypoxia; Lithium Chloride; Matrix Attachment Region Binding Proteins; Oxidative Stress; Placenta; Placentation; Pre-Eclampsia; Pregnancy; Signal Transduction; Trophoblasts

2018
Activation of Wnt3α/β-catenin signal pathway attenuates apoptosis of the cerebral microvascular endothelial cells induced by oxygen-glucose deprivation.
    Biochemical and biophysical research communications, 2017, 08-19, Volume: 490, Issue:2

    Brain microvascular endothelial cells (BMECs) play vital roles in cerebral ischemia, during which many signal pathways mediate BMECs apoptosis. In this study, we explored the potential role of Wnt3α/β-catenin signal in BMECs apoptosis induced by ischemia. Here, we found that oxygen-glucose deprivation (OGD) could induce apoptosis of BMECs with Wnt3a mRNA expression decrease. Meanwhile, activation Wnt3a/β-catenin signal with exogenous Wnt3α protein (100 ng/ml) or Lithium Chloride (LiCl, 4 mM) decreased significantly apoptosis of BMECs induced by OGD with increasing expression of Bcl-2 in the whole cell and β-catenin in the nucleus. But, inhibition Wnt3a/β-catenin signal with DKK1 (100 ng/ml) or 2.4-diamino quinazoline (DQ, 0.2 μM) increased apoptosis of BMECs with decreasing expression of Bcl-2. These results suggest that activation Wnt3α/β-catenin signal attenuate apoptosis of BMECs induced by ischemia.

    Topics: Animals; Apoptosis; beta Catenin; Cell Survival; Cells, Cultured; Cerebrovascular Circulation; Cerebrum; Endothelial Cells; Glucose; Hypoxia; Intercellular Signaling Peptides and Proteins; Lithium Chloride; Microvessels; Oxygen; Quinazolines; Rats; Rats, Sprague-Dawley; Wnt Signaling Pathway; Wnt3 Protein

2017
Protection of Neurovascular Unit Cells with Lithium Chloride and Sodium Valproate Prevents Brain Damage in Neonatal Ischemia/Hypoxia.
    Bulletin of experimental biology and medicine, 2016, Volume: 160, Issue:3

    Here we studied the cytoprotective effect of lithium chloride and sodium valproate in the in vivo model of neonatal cerebral ischemia/hypoxia and analyzed the influence of these substances on the death of the major neurovascular unit components in experimental ischemia in vitro. Lithium chloride and sodium valproate effectively prevented death of neurons, astrocytes, and endothelial cells in the oxygen-glucose deprivation. This treatment protected the brain of newborn rats from ischemia/hypoxia injury. The results suggest that lithium and sodium valproate can be used for the treatment of neurodegenerative pathologies associated with hypoxia and ischemia in newborns.

    Topics: Animals; Animals, Newborn; Brain Injuries; Hypoxia; Hypoxia-Ischemia, Brain; Lithium Chloride; Rats; Valproic Acid

2016
Pressure overload regulates expression of cytokines, γH2AX, and growth arrest- and DNA-damage inducible protein 153 via glycogen synthase kinase-3β in ischemic-reperfused hearts.
    Hypertension (Dallas, Tex. : 1979), 2013, Volume: 61, Issue:1

    The growth arrest- and DNA-damage inducible protein 153 (GADD153) regulates both apoptosis and inflammatory response. Importantly, glycogen synthase kinase-3β (GSK-3β) may provide a mechanistic link for cellular expression of GADD153, inflammatory response, and cell death. We previously showed that pressure overload exacerbates myocardial ischemia reperfusion injury associated with significant reduction in phosphorylated (inactive) GSK-3β. This raises the possibility that pressure overload, through a GSK-3β-dependent mechanism, increases GADD153 expression, thereby upregulating inflammatory cytokine production and contributing to worsening of myocardial ischemia reperfusion injury. Accordingly, Langendorff-perfused rat hearts were subjected to global ischemia reperfusion protocol in the absence or presence of the GSK-3β inhibitor, lithium chloride (1 mmol/L), with perfusion pressure set at 80 or 160 cmH(2)O; normoxic hearts served as controls. Compared with normoxia, an ischemia reperfusion insult increased expressions of proinflammatory cytokines, γH2AX, and GADD153 in association with increased cell death. In the ischemic-reperfused hearts, pressure overload did the following: (1) reduced interleukin-10 but increased interleukin-17 (cardiomyocytes), without affecting interleukin-23; (2) increased expressions of γH2AX and GADD153; (3) decreased 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) aggregates but increased JC-1 monomers (suggestive of reduced mitochondrial membrane potential, ψ(m)); and (4) increased annexin V immunostaining as well as apoptotic and necrotic cell death. Treatment with lithium chloride caused a robust increase in interleukin-10, preserved ψ(m), and markedly decreased all other parameters with the effect being most prominent for hearts perfused at the high pressure. In conclusion, pressure overload, via a GSK-3β-dependent mechanism, exacerbates cell death in the isolated ischemic-reperfused heart involving regulation of inflammatory response, DNA injury, and GADD153 expression.

    Topics: Animals; Cytokines; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heart; Histones; Hypoxia; Lithium Chloride; Male; Membrane Potential, Mitochondrial; Myocardial Ischemia; Myocardial Reperfusion; Myocardial Reperfusion Injury; Myocardium; Phosphoproteins; Rats; Rats, Sprague-Dawley; Transcription Factor CHOP

2013
Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia.
    The Journal of biological chemistry, 2009, Jun-26, Volume: 284, Issue:26

    Preeclampsia is a major pregnancy-specific disorder affecting 5-7% of pregnancies worldwide. Although hypoxia caused by incomplete trophoblast invasion and impaired spiral arterial remodeling is thought to be a major cause of preeclampsia, how hypoxia affects placental development remains uncertain. GCM1 (glial cells missing homolog 1) is a transcription factor critical for placental development. In preeclampsia, GCM1 and its target genes syncytin 1 and placental growth factor, important for syncytiotrophoblast formation and placental vasculogenesis, are all decreased. Here we present evidence that GCM1 is a major target of hypoxia associated with preeclampsia. We show that hypoxia triggers GCM1 degradation by suppressing the phosphatidylinositol 3-kinase-Akt signaling pathway, leading to GSK-3beta activation. Activated GSK-3beta phosphorylates GCM1 on Ser322, which in turn recruits the F-box protein FBW2, leading to GCM1 ubiquitination and degradation. Importantly, the GSK-3beta inhibitor LiCl prevented hypoxia-induced GCM1 degradation. Our study identifies a molecular basis for the disrupted GCM1 transcription network in preeclampsia and provides a potential avenue for therapeutic intervention.

    Topics: Antimanic Agents; Cells, Cultured; DNA-Binding Proteins; Female; Fluorescent Antibody Technique; Gene Products, env; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Hypoxia; Immunoblotting; Immunoenzyme Techniques; Immunoprecipitation; Lithium Chloride; Nuclear Proteins; Phosphatidylinositol 3-Kinases; Phosphorylation; Placenta; Pre-Eclampsia; Pregnancy; Pregnancy Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; SKP Cullin F-Box Protein Ligases; Transcription Factors; Transfection; Ubiquitination

2009
Lithium affects REM sleep occurrence, autonomic activity and brain second messengers in the rat.
    Behavioural brain research, 2008, Mar-05, Volume: 187, Issue:2

    The effects of a single intraperitoneal administration of lithium, a drug used to prevent the recurrence of mania in bipolar disorders, were determined in the rat by studying changes in: (i) the wake-sleep cycle; (ii) autonomic parameters (hypothalamic and tail temperature, heart rate); (iii) the capacity to accumulate cAMP and IP(3) in the preoptic-anterior hypothalamic region (PO-AH) and in the cerebral cortex (CC) under an hypoxic stimulation at normal laboratory and at low ambient temperature (T(a)). In the immediate hours following the injection, lithium induced: (i) a significant reduction in REM sleep; (ii) a non-significant reduction in the delta power density of the EEG in NREM sleep; (iii) a significant decrease in the concentration of cAMP in PO-AH at normal laboratory T(a); (iv) a significant increase of IP(3) concentration in CC following exposure to low T(a). The earliest and most sensitive effects of lithium appear to be those concerning sleep. These changes are concomitant with biochemical effects that, in spite of a systemic administration of the substance, may be differentiated according to the second messenger involved, the brain region and the ambient condition.

    Topics: Analysis of Variance; Animals; Antimanic Agents; Autonomic Nervous System; Body Temperature Regulation; Brain; Cerebral Cortex; Cyclic AMP; Electroencephalography; Heart Rate; Hypothalamus; Hypoxia; Inositol 1,4,5-Trisphosphate; Lithium Chloride; Male; Rats; Rats, Sprague-Dawley; Second Messenger Systems; Sleep, REM; Statistics, Nonparametric

2008
Emetic stimulation inhibits the swallowing reflex in decerebrate rats.
    Autonomic neuroscience : basic & clinical, 2008, Volume: 140, Issue:1-2

    The effects of emetic stimulation on the swallowing reflex were investigated in decerebrated rats. Hypoxia, gastric distension and LiCl administration were used as emetic stimulations. The swallowing reflex was elicited by electrical stimulation of the superior laryngeal nerve (SLN, 20 Hz, 3-5 V, 0.3 ms duration) for 20 s. To examine the effect of hypoxia, nitrogen gas was inhaled under artificial ventilation. There were significantly fewer swallows during a decrease in PO(2) than under air ventilation (p<0.05). The number of swallows during 3-ml stomach distension was significantly lower than that before distension (p<0.05). Intravenous administration of LiCl (100 mg/kg) also significantly reduced the number of swallows (p<0.05). The combination of SLN stimulation and emetic stimuli occasionally produced burst activity of abdominal muscles, which might be associated with the gag reflex. Both the gag and swallowing reflexes are well known to be mediated by the nucleus of the solitary tract. The physiological roles of the gag reflex and the swallowing reflex are considered to be reciprocal. Taken together, these results suggest that emetic stimulation inhibits the swallowing pattern generator via the nucleus of the solitary tract, which in turn facilitates the gag reflex.

    Topics: Animals; Decerebrate State; Deglutition; Electric Stimulation; Electromyography; Emetics; Gagging; Hypoxia; Laryngeal Muscles; Laryngeal Nerves; Lithium Chloride; Medulla Oblongata; Muscle Contraction; Nerve Net; Pharynx; Physical Stimulation; Rats; Rats, Sprague-Dawley; Reflex; Solitary Nucleus; Stimulation, Chemical; Stomach; Vomiting

2008
Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells.
    The Journal of biological chemistry, 2003, Aug-15, Volume: 278, Issue:33

    Hypoxia initiates an intracellular signaling pathway leading to the activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 activity is regulated through different mechanisms involving stabilization of HIF-1alpha, phosphorylations, modifications of redox conditions, and interactions with coactivators. However, it appears that some of these steps can be cell type-specific. Among them, the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the regulation of HIF-1 by hypoxia remains controversial. Here, we investigated the activation state of PI3K/Akt/glycogen synthase kinase 3beta (GSK3beta) in HepG2 cells. Increasing incubation times in hypoxia dramatically decreased both the phosphorylation of Akt and the inhibiting phosphorylation of GSK3beta. The PI3K/Akt pathway was necessary for HIF-1alpha stabilization early during hypoxia. Indeed, its inhibition was sufficient to decrease HIF-1alpha protein level after 5-h incubation in hypoxia. However, longer exposure (16 h) in hypoxia resulted in a decreased HIF-1alpha protein level compared with early exposure (5 h). At that time, Akt was no longer present or active, which resulted in a decrease in the inhibiting phosphorylation of GSK3beta on Ser-9 and hence in an increased GSK3beta activity. GSK3 inhibition reverted the effect of prolonged hypoxia on HIF-1alpha protein level; more stabilized HIF-1alpha was observed as well as increased HIF-1 transcriptional activity. Thus, a prolonged hypoxia activates GSK3beta, which results in decreased HIF-1alpha accumulation. In conclusion, hypoxia induced a biphasic effect on HIF-1alpha stabilization with accumulation in early hypoxia, which depends on an active PI3K/Akt pathway and an inactive GSK3beta, whereas prolonged hypoxia results in the inactivation of Akt and activation of GSK3beta, which then down-regulates the HIF-1 activity through down-regulation of HIF-1alpha accumulation.

    Topics: Adjuvants, Immunologic; Carcinoma, Hepatocellular; Chromones; DNA-Binding Proteins; Enzyme Inhibitors; Gene Expression; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Hypoxia; Hypoxia-Inducible Factor 1; Hypoxia-Inducible Factor 1, alpha Subunit; Lithium Chloride; Liver Neoplasms; Morpholines; Nuclear Proteins; Phosphatidylinositol 3-Kinases; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Transcription Factors; Tumor Cells, Cultured

2003
Hypoxia inhibits the synthesis of phosphoinositides in the rabbit carotid body.
    Pflugers Archiv : European journal of physiology, 1999, Volume: 437, Issue:6

    Hypoxic transduction in the carotid body (CB) is regulated by several systems of second messengers, but the role of the phospholipase C system has not been studied. The aim of the present study was to characterize the turnover rate of inositol phosphates (InsPs) and phosphoinositides (PIs) and their modifications by hypoxia in the rabbit CB in vitro. In CBs, in which the PIs had been labelled previously with 3H-myo-inositol, hypoxia in the presence of LiCl did not modify the accumulation of 3H-InsPs, whilst exposure to hypoxia during the loading period in the presence of LiCl reduced the accumulation of 3H-InsPs by more than 50%. Endogenous levels of inositol 1,4,5-trisphosphate were unaltered by hypoxia. Synthesis of 3H-PIs from 3H-myo-inositol was markedly inhibited by hypoxia in the CB, but not in the rat superior cervical ganglion used as control tissue. Levels of 3H-phosphatidylinositol (3H-PtdIns), 3H-phosphatidylinositol 4-monophosphate and 3H-phosphatidylinositol 4,5-bisphosphate were similarly decreased, indicating that inhibition occurs at a step prior to PtdIns synthesis. It is concluded that the phospholipase C system of second messengers does not play a significant role in the short-term regulation of hypoxic transduction cascade. It can be speculated that the decrease in PI availability produced by hypoxia might be involved in the functional changes observed in the CB on chronic hypoxic exposure.

    Topics: Animals; Carotid Body; Hypoxia; Inositol; Inositol 1,4,5-Trisphosphate; Lithium Chloride; Phosphatidylinositols; Rabbits; Rats; Rats, Wistar; Second Messenger Systems; Tritium; Type C Phospholipases

1999
In utero hypoxic ischemia decreases the cholinergic agonist-stimulated poly-phosphoinositide turnover in the developing rat brain.
    Neurochemical research, 1995, Volume: 20, Issue:12

    Perinatal hypoxic-ischemic (HI) insult is known to cause cellular and molecular disturbances leading to functional and behavioral abnormalities during brain development. In this study, we examined the effects of an in utero HI insult on poly-phosphoinositide turnover in vivo in the cerebrum and cerebellum as well as cholinergic-stimulated turnover in cortical slices from developing rat brain. In utero HI treatment was carried out by clamping the uterine blood vessels of near-term fetuses for 5, 10 and 15 min followed by resuscitation of the newborn pups. The in vivo protocol for examining poly-PI signaling activity in 2 week-old pup brain involved intracerebral injection of [3H]inositol for 16 hr and subsequent intraperitoneal injection with lithium (8 meq/kg) for 4 hr prior to decapitation. In the control pups, lithium elicited a 2.6 fold increase in labeled inositol phosphate (IP) in the cerebrum as compared to a 1.3 fold increase in the cerebellum. In utero HI insult (5 to 15 min) resulted in a small increase in labeled IP in the cerebrum but not in the cerebellum. Carbachol stimulation of poly-PI turnover was examined in brain slices prelabeled with [3H]inositol in vivo. Incubation of the prelabeled slices with carbachol in the presence of LiCl (10 mM) resulted in a time-, dose- and age-dependent increase in labeled IP. Brain slices from 2 week-old pups that experienced in utero HI-treatment for 10 and 15 min (but not 5 min) showed a significant decrease in carbachol-stimulation of labeled IP as compared with control pups. These results indicate the effects of in utero HI on the choninergic-stimulated poly-PI signaling pathway and its implication on related functional deficits in the developing brain.

    Topics: Animals; Brain; Carbachol; Constriction; Female; Hypoxia; Inositol; Ischemia; Lithium Chloride; Parasympathomimetics; Phosphatidylinositol Phosphates; Pregnancy; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Sodium Chloride; Tritium; Uterus

1995
Phosphatidylinositol metabolism during in vitro hypoxia.
    Journal of neurochemistry, 1989, Volume: 52, Issue:3

    The effects of in vitro histotoxic hypoxia (0.5 mM KCN) on potassium-stimulated phosphatidylinositol turnover were determined. In rat cortical slices that were prelabeled with [2-3H]inositol, depolarization with 60 mM KCl increased [2-3H]inositol monophosphate and [2-3H]inositol bisphosphate accumulation in a Ca2+-dependent manner. At early times (10 s and 1 min), histotoxic hypoxia enhanced potassium-stimulated [2-3H]inositol monophosphate and inositol bisphosphate accumulation. Under basal conditions, hypoxia did not alter the accumulation of [2-3H]inositol phosphates. These results are consistent with the following hypothesis. The hypoxic-induced increase in cytosolic free calcium that we reported previously may lead to the early stimulation of inositol phosphates formation during hypoxia through activation of phospholipase C. The impairment of inositol phosphates formation during more prolonged hypoxia may be due to negative feedback regulation of the phosphatidylinositol cascade by protein kinase C or to a reduction in ATP levels.

    Topics: Animals; Calcium; Cerebral Cortex; Chlorides; Hypoxia; Inositol; Lithium; Lithium Chloride; Male; Phosphatidylinositol 4,5-Diphosphate; Phosphatidylinositol Phosphates; Phosphatidylinositols; Potassium Chloride; Potassium Cyanide; Rats; Rats, Inbred Strains

1989