lithium-chloride has been researched along with Epilepsy--Temporal-Lobe* in 26 studies
26 other study(ies) available for lithium-chloride and Epilepsy--Temporal-Lobe
Article | Year |
---|---|
Chaihu-Longgu-Muli Decoction exerts an antiepileptic effect in rats by improving pyroptosis in hippocampal neurons.
Chaihu-Longgu-Muli Decoction (CLMD) is a classic prescription created by Zhong-jing Zhang, a famous ancient Chinese medical scientist, to harmonize uncontrollable body activities and calm the minds. Now Traditional Chinese Medicine (TCM) physicians often apply it to treat psychiatric diseases such as epilepsy.. This study investigated the mechanism of the effect of Chaihu-Longgu-Muli Decoction (CLMD) on hippocampal neurons pyroptosis in rats with Temporal Lobe Epilepsy (TLE).. The lithium chloride-pilocarpine-induced TLE rat model was established. The behavioral testing was performed and, the expression of IL-1β and TNF-α in serum was detected by ELISA, qRT-PCR was used to detect the mRNA expression of NLRP3, Caspase-1, IL-1β and TNF-α in hippocampus. The expression of NLRP3 and Caspase-1 in hippocampal dentate gyrus was detected by immunofluorescence assay.. CLMD could significantly suppress the frequency and duration time of epileptic seizures, reduce the expression of NLRP3, Caspase-1 TNF-α and IL-1β.. CLMD exerted an obvious antiepileptic effect by improving pyroptosis in hippocampal neurons of TLE rats. Topics: Animals; Anticonvulsants; Cytoskeletal Proteins; Disease Models, Animal; Drugs, Chinese Herbal; Epilepsy, Temporal Lobe; Hippocampus; Interleukin-1beta; Lithium Chloride; Male; Neurons; NLR Family, Pyrin Domain-Containing 3 Protein; Pilocarpine; Pyroptosis; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha | 2021 |
Alkaline brain pH shift in rodent lithium-pilocarpine model of epilepsy with chronic seizures.
Brain pH is thought to be important in epilepsy. The regulation of brain pH is, however, still poorly understood in animal models of chronic seizures (SZ) as well as in patients with intractable epilepsy. We used chemical exchange saturation transfer (CEST) MRI to noninvasively determine if the pH is alkaline shifted in a rodent model of the mesial temporal lobe (MTL) epilepsy with chronic SZ. Taking advantage of its high spatial resolution, we determined the pH values in specific brain regions believed to be important in this model produced by lithium-pilocarpine injection. All animals developed status epilepticus within 90 min after the lithium-pilocarpine administration, but one animal died within 24 hrs. All the surviving animals developed chronic SZ during the first 2 months. After SZ developed, brain pH was determined in the pilocarpine and control groups (n = 8 each). Epileptiform activity was documented in six pilocarpine rats with scalp EEG. The brain pH was estimated using two methods based on magnetization transfer asymmetry and amide proton transfer ratio. The pH was alkaline shifted in the pilocarpine rats (one outlier excluded) compared to the controls in the hippocampus (7.29 vs 7.17, t-test, p < 0.03) and the piriform cortex (7.34 vs. 7.06, p < 0.005), marginally more alkaline in the thalamus (7.13 vs. 7.01, p < 0.05), but not in the cerebral cortex (7.18 vs. 7.08, p > 0.05). Normalizing the brain pH may lead to an effective non-surgical method for treating intractable epilepsy as it is known that SZ can be eliminated by lowering the pH. Topics: Animals; Brain; Brain Chemistry; Convulsants; Disease Models, Animal; Drug Resistant Epilepsy; Epilepsy, Temporal Lobe; Hydrogen-Ion Concentration; Lithium Chloride; Male; Pilocarpine; Rats; Rats, Sprague-Dawley | 2021 |
GPER1 Modulates Synaptic Plasticity During the Development of Temporal Lobe Epilepsy in Rats.
G-protein coupled estrogen receptor 1 (GPER1) is a novel type of estrogen receptor. Several studies have shown that it has an anti-inflammatory action,which plays an important role in remyelination and cognitive ability adjustment. However, whether it is involved in the development of temporal lobe epilepsy (TLE) is still unknown. The present study established a TLE model by intraperitoneal injection of lithium chloride (3 mmol/kg) and pilocarpine (50 mg/kg) in rats to study the effect of GPER1 in the synaptic plasticity during the development of temporal lobe epilepsy. A microinjection cannula was implanted into the lateral ventricle region of rats via a stereotaxic instrument. G-1 is the specific GPER1 agonist and G15 is the specific GPER1 antagonist. The G1 or G15 and Dimethyl sulfoxide were injected into the rat brains in the intervention groups and control group, respectively. After G1 intervention, the learning and memory abilities and hippocampal neuron damage in epileptic rats were significantly improved, while G15 weakened the neuroprotective effect of GPER1. Meanwhile, G1 controlled the abnormal formation of hippocampal mossy fiber sprouting caused by seizures, and participated in the regulation of synaptic plasticity by reducing the expression of Synapsin I and increasing the expression of gephyrin. Inhibitory synapse gephyrin may play a significant role in synaptic plasticity. Topics: Animals; Epilepsy, Temporal Lobe; Hippocampus; Learning; Lithium Chloride; Male; Membrane Proteins; Memory; Neuronal Plasticity; Neurons; Pilocarpine; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Synapsins | 2021 |
SLC1A2 mediates refractory temporal lobe epilepsy with an initial precipitating injury by targeting the glutamatergic synapse pathway.
This study aimed to identify the genes related to epilepsy and their effects on epilepsy, as well as the underlying mechanism. Using microarray analysis, differentially expressed genes (DEGs) were screened out and then used to build weighted gene coexpression networks using WGCNA. Module membership and evaluation of gene significance (GS) were adopted to detect hub genes. The DAVID online tool was used to understand the function of modules and target genes. The Licl-pilocarpine chronic rat epilepsy model was used to simulate mesial temporal lobe epilepsy with an initial precipitating injury. Hippocampal expression of the proteins solute carrier family 1 member 2 (SLC1A2), glial fibrillary acidic protein, interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and N-methyl-d-aspartic acid receptor (NMDAR) was determined by ELISA and Western blot. Nissl staining was used to measure neuronal loss. Immunohistochemistry was performed to assess the percentage of positive cells to reflect the distribution of NMDAR1. Here, 3232 potential genes highly correlated with epilepsy were selected from the screened DEGs, among which SLC1A2 was related to brain development and its expression was significantly decreased in epilepsy patients. According to Gene Ontology and KEGG analysis, SLC1A2 mediates epilepsy through the glutamatergic synapse pathway. Tissue experiments suggested that Slc1a2 could genuinely ameliorate epilepsy through the glutamatergic synapse pathway, mitigate neuronal loss, and suppress astrocytosis and inflammatory responses. Our study suggested that low hippocampal content of SLC1A2 is a potential biomarker of epilepsy and may affect the function of neurons through the glutamatergic synapse pathway. © 2018 IUBMB Life, 71(1):213-222, 2019. Topics: Animals; Astrocytes; Biomarkers; Cell Death; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Hippocampus; Humans; Interleukin-1beta; Lithium Chloride; Male; Neurons; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission; Tumor Necrosis Factor-alpha | 2019 |
Monocytes as Carriers of Magnetic Nanoparticles for Tracking Inflammation in the Epileptic Rat Brain.
Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain.. In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes.. The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry.. 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05).. Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy. Topics: Animals; Boron Compounds; Disease Models, Animal; Drug Delivery Systems; Epilepsy, Temporal Lobe; Fluorescent Dyes; Hippocampus; Inflammation; Kidney; Lithium Chloride; Liver; Magnetite Nanoparticles; Male; Monocytes; Pilocarpine; Rats, Wistar; Spleen | 2019 |
Ginkgo biloba L. attenuates spontaneous recurrent seizures and associated neurological conditions in lithium-pilocarpine rat model of temporal lobe epilepsy through inhibition of mammalian target of rapamycin pathway hyperactivation.
Ginkgo biloba L. (Ginkgoaceae) has been widely used in traditional medicine for variety of neurological conditions particularly behavioral and memory impairments.. The present study was envisaged to explore the effect of a standardized fraction of Ginkgo biloba leaves (GBbf) in rat model of lithium-pilocarpine induced spontaneous recurrent seizures, and associated behavioral impairments and cognitive deficit.. Rats showing appearance of spontaneous recurrent seizures following lithium pilocarpine (LiPc)-induced status epilepticus (SE) were treated with different doses of GBbf or vehicle for subsequent 4 weeks. The severity of seizures and aggression in rats were scored following treatment with GBbf. Further, open field, forced swim, novel object recognition and Morris water maze tests were conducted. Histopathological, protein levels and gene expression studies were performed in the isolated brains.. Treatment with GBbf reduced seizure severity score and aggression in epileptic animals. Improved spatial cognitive functions and recognition memory, along with reduction in anxiety-like behavior were also observed in the treated animals. Histopathological examination by Nissl staining showed reduction in neuronal damage in the hippocampal pyramidal layer. The dentate gyrus and Cornu Ammonis 3 regions of the hippocampus showed reduction in mossy fiber sprouting. GBbf treatment attenuated ribosomal S6 and pS6 proteins, and hippocampal mTOR, Rps6 and Rps6kb1 mRNA levels.. The results of present study concluded that GBbf treatment suppressed lithium-pilocarpine induced spontaneous recurrent seizures severity and incidence with improved cognitive functions, reduced anxiety-like behavior and aggression. The effect was found to be due to inhibition of mTOR pathway hyperactivation linked with recurrent seizures. Topics: Aggression; Animals; Anticonvulsants; Anxiety; Behavior, Animal; Brain; Depression; Epilepsy, Temporal Lobe; Ginkgo biloba; Lithium Chloride; Male; Maze Learning; Phytotherapy; Pilocarpine; Plant Extracts; Plant Leaves; Rats, Wistar; Recognition, Psychology; Ribosomal Protein S6; Ribosomal Protein S6 Kinases, 70-kDa; RNA, Messenger; TOR Serine-Threonine Kinases | 2017 |
NMDAR-independent hippocampal long-term depression impairment after status epilepticus in a lithium-pilocarpine model of temporal lobe epilepsy.
Temporal lobe epilepsy is usually associated with cognitive decline and memory deficits. Despite numerous existing studies on various animal models, the mechanisms of these deficits remain largely unclear. A specific form of long-term synaptic efficacy changes-long-term depression (LTD)-is thought to play an important role in memory formation and learning. However, extremely little is known about the possible alteration of LTD induction and dynamics after a status epilepticus (SE). In this work, we investigated the acute and delayed effects of lithium-pilocarpine-induced SE on NMDAR-dependent and NMDAR-independent hippocampal LTD in vitro. We found that SE affected the NMDAR-dependent and NMDAR-independent forms of LTD in different manners. The NMDAR-dependent form of LTD was almost intact 3 days after SE, but it switched from a predominantly presynaptic to a more postsynaptic locus of expression. In contrast, the NMDAR-independent LTD in the hippocampal Schaffer collaterals-CA1 synapses was fully abolished 3 days after SE. Our results emphasize the role of non-NMDA-dependent synaptic plasticity changes in the processes of epileptogenesis and the potential for therapy development. Topics: 2-Amino-5-phosphonovalerate; Animals; CA1 Region, Hippocampal; CA3 Region, Hippocampal; Disease Models, Animal; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Lithium Chloride; Long-Term Synaptic Depression; Male; Pilocarpine; Random Allocation; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Status Epilepticus; Synapses; Time Factors; Tissue Culture Techniques | 2017 |
The role of ubiquitin/Nedd4-2 in the pathogenesis of mesial temporal lobe epilepsy.
Although the pathogenesis and epileptogenesis of mesial temporal lobe epilepsy (MTLE) have been studied for years, many questions remain. The ubiquitin-proteasome system (UPS) is one factor that might regulate ion channels, inflammation and neuron excitability. Nedd4-2 is an E3 ubiquitin ligase linked with ion channels and synaptic vesicle recycling. Here, we explore the role of the UPS and its E3 ligase Nedd4-2 in the pathogenesis of MTLE. Our western blot results revealed that ubiquitin and Nedd4-2 were expressed differentially in different stages of MTLE. Co-immunoprecipitation and double immunostaining results indicated that Nedd4-2 was the substrate protein of ubiquitin both in vivo and in vitro. Inhibition of the UPS aggravated the epileptogenesis of MTLE, causing early and frequent spontaneous seizures, more obvious neuron loss and aberrant mossy fiber sprouting. Inhibition of ubiquitin also enhanced the activation of Nedd4-2, and switched ion channel α-ENaC downstream. Our study is the first to report that the UPS participates in the pathogenesis of MTLE, inhibition of UPS could aggravate the epileptogenesis, and that Nedd4-2 is a critical E3 ligase involved in this process. Topics: Adenosine Monophosphate; Analysis of Variance; Animals; Animals, Newborn; Antimanic Agents; Cells, Cultured; Cysteine Proteinase Inhibitors; Disease Models, Animal; Endosomal Sorting Complexes Required for Transport; Epilepsy, Temporal Lobe; Female; Gene Expression Regulation; Hippocampus; Immunoprecipitation; Leupeptins; Lithium Chloride; Male; Muscarinic Agonists; Nedd4 Ubiquitin Protein Ligases; Neurons; Pilocarpine; Rats, Sprague-Dawley; RNA, Small Interfering; Time Factors; Transfection; Ubiquitin; Ubiquitin-Protein Ligases; Ubiquitins | 2015 |
Synchronous alteration pattern between serine-threonine kinase receptor-associated protein and Smad7 in pilocarpine-induced rats of epilepsy.
Recent studies have shown that transforming growth factor β (TGFβ) signaling participates in the epileptogenesis. Serine-threonine kinase receptor-associated protein (STRAP) and Smad7 synergize in the inhibition of the TGFβ signaling. The aim of the present study was to determine the expression pattern of STRAP and Smad7 in the hippocampus and temporal lobe cortex of pilocarpine-induced rats models of epilepsy.. Lithium chloride-pilocarpine-induced rats with status epilepticus (SE) were established. Total of 60 male Sprague-Dawley rats was used as control (n = 10), 24 h (n = 10), 72 h (n = 10), 1 week (n = 10), 1 month (n = 10), and 2 months (n = 10) after pilocarpine-induced SE, respectively. We detected the expression levels of STRAP and Smad7 in the hippocampus and temporal lobe cortex of rats at the aforementioned time points using western blotting and immunohistochemistry.. STRAP level was significantly decreased in 24 h, 72 h (acute stage), 1 week (latent stage), 1 month, 2 months (chronic stage), respectively, in the rat models compared with the control rats by using both western blotting and immunohistochemistry. Smad7 had similar reduced pattern as STRAP.. Our results indicate that STRAP and Smad7 proteins might be involved in the development of temporal lobe epilepsy. Topics: Adaptor Proteins, Signal Transducing; Animals; Blotting, Western; Chronic Disease; Disease Models, Animal; Epilepsy, Temporal Lobe; Gene Expression; Hippocampus; Immunohistochemistry; Lithium Chloride; Male; Pilocarpine; Rats; Rats, Sprague-Dawley; Smad7 Protein; Status Epilepticus; Temporal Lobe; Time Factors | 2014 |
Activation of brain indoleamine 2,3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy.
Depression has most often been diagnosed in patients with temporal lobe epilepsy (TLE), but the mechanism underlying this association remains unclear. In this study, we report that indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism, plays a key role in epilepsy-associated depressive-like behavior.. Rats which develop chronic epilepsy following pilocarpine status epilepticus exhibited a set of interictal disorders consistent with depressive-like behavior. Changes of depressive behavior were examined by taste preference test and forced swim test; brain IL-1β, IL-6 and IDO1 expression were quantified using real-time reverse transcriptase PCR; brain kynurenine/tryptophan and serotonin/tryptophan ratios were analyzed by liquid chromatography-mass spectrometry. Oral gavage of minocycline or subcutaneous injection of 1-methyltryptophan (1-MT) were used to inhibite IDO1 expression.. We observed the induction of IL-1β and IL-6 expression in rats with chronic TLE, which further induced the upregulation of IDO1 expression in the hippocampus. The upregulation of IDO1 subsequently increased the kynurenine/tryptophan ratio and decreased the serotonin/tryptophan ratio in the hippocampus, which contributed to epilepsy-associated depressive-like behavior. The blockade of IDO1 activation prevented the development of depressive-like behavior but failed to influence spontaneous seizures. This effect was achieved either indirectly, through the anti-inflammatory tetracycline derivative minocycline, or directly, through the IDO antagonist 1-MT, which normalizes kynurenine/tryptophan and serotonin/tryptophan ratios.. Brain IDO1 activity plays a key role in epileptic rats with epilepsy-associated depressive-like behavior. Topics: Animals; Chromatography, Liquid; Cytokines; Depression; Disease Models, Animal; Epilepsy, Temporal Lobe; Food Preferences; Gene Expression Regulation; Hippocampus; Indoleamine-Pyrrole 2,3,-Dioxygenase; Lithium Chloride; Male; Mass Spectrometry; Minocycline; Rats; Rats, Wistar; Statistics, Nonparametric; Time Factors; Tryptophan | 2014 |
Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information.
Cognitive impairment is a common comorbidity in temporal lobe epilepsy (TLE) and is often considered more detrimental to quality of life than seizures. While it has been previously shown that the encoding of memory during behavior is impaired in the pilocarpine model of TLE in rats, how this information is consolidated during the subsequent sleep period remains unknown. In this study, we first report marked deficits in spatial memory performance and severe cell loss in the CA1 layer of the hippocampus lower spatial coherence of firing in TLE rats. We then present the first evidence that the reactivation of behavior-driven patterns of activity of CA1 place cells in the hippocampus is intact in TLE rats. Using a template-matching method, we discovered that real-time (3-5 s) reactivation structure was intact in TLE rats. Furthermore, we estimated the entropy rate of short time scale (∼250 ms) bursting activity using block entropies and found that significant, extended temporal correlations exist in both TLE and control rats. Fitting a first-order Markov Chain model to these bursting time series, we found that long sequences derived from behavior were significantly enriched in the Markov model over corresponding models fit on randomized data confirming the presence of replay in shorter time scales. We propose that the persistent consolidation of poor spatial information in both real time and during bursting activity may contribute to memory impairments in TLE rats. Topics: Action Potentials; Animals; CA1 Region, Hippocampal; Cognition Disorders; Comorbidity; Disease Models, Animal; Epilepsy, Temporal Lobe; Lithium Chloride; Markov Chains; Maze Learning; Models, Neurological; Pilocarpine; Pyramidal Cells; Rats, Sprague-Dawley; Seizures; Sleep; Spatial Memory; Time Factors | 2014 |
Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy.
Recently, the role of inflammation has attracted great attention in the pathogenesis of mesial temporal lobe epilepsy (MTLE), and microRNAs start to emerge as promising new players in MTLE pathogenesis. In this study, we investigated the dynamic expression patterns of tumor necrosis factor alpha (TNF-α) and microRNA-155 (miR-155) in the hippocampi of an immature rat model of status epilepticus (SE) and children with MTLE. The expressions of TNF-α and miR-155 were significantly upregulated in the seizure-related acute and chronic stages of MTLE in the immature rat model and also in children with MTLE. Modulation of TNF-α expression, either by stimulation using myeloid-related protein (MRP8) or lipopolysaccharide or inhibition using lenalidomide on astrocytes, leads to similar dynamic changes in miR-155 expression. Our study is the first to focus on the dynamic expression pattern of miR-155 in the immature rat of SE lithium-pilocarpine model and children with MTLE and to detect their relationship at the astrocyte level. TNF-α and miR-155, having similar expression patterns in the three stages of MTLE development, and their relationship at the astrocyte level may suggest a direct interactive relationship during MTLE development. Therefore, modulation of the TNF-α/miR-155 axis may be a novel therapeutic target for the treatment of MTLE. Topics: Adolescent; Animals; Astrocytes; Case-Control Studies; Child; Epilepsy, Temporal Lobe; Female; Hippocampus; Humans; Lenalidomide; Lipopolysaccharides; Lithium Chloride; Male; MicroRNAs; Pilocarpine; Rats; Rats, Sprague-Dawley; Status Epilepticus; Thalidomide; Tumor Necrosis Factor-alpha | 2013 |
Speed modulation of hippocampal theta frequency correlates with spatial memory performance.
Hippocampal theta rhythm is believed to play a critical role in learning and memory. In animal models of temporal lobe epilepsy (TLE), there is evidence that alterations of hippocampal theta oscillations are involved in the cognitive impairments observed in this model. However, hippocampal theta frequency and amplitude at both the local field potential (LFP) and single unit level are strongly modulated by running speed, suggesting that the integration of locomotor information into memory processes may also be critical for hippocampal processing. Here, we investigate whether hippocampal speed-theta integration influences spatial memory and whether it could account for the memory deficits observed in TLE rats. LFPs were recorded in both Control (CTR) and TLE rats as they were trained in a spatial alternation task. TLE rats required more training sessions to perform the task at CTR levels. Both theta frequency and power were significantly lower in the TLE group. In addition, speed/theta frequency correlation coefficients and regression slopes varied from session to session and were worse in TLE. Importantly, there was a strong relationship between speed/theta frequency parameters and performance. Our analyses reveal that speed/theta frequency correlation with performance cannot merely be explained by the direct influence of speed on behavior. Therefore, variations in the coordination of theta frequency with speed may participate in learning and memory processes. Impairments of this function could explain at least partially memory deficits in epilepsy. Topics: Animals; Disease Models, Animal; Electrodes, Implanted; Electroencephalography; Epilepsy, Temporal Lobe; Food Deprivation; Hippocampus; Lithium Chloride; Maze Learning; Memory Disorders; Muscarinic Agonists; Pilocarpine; Rats; Rats, Sprague-Dawley; Space Perception; Theta Rhythm; Time Factors | 2013 |
Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy.
Increasing evidence indicates that neuroinflammation plays a critical role in the pathogenesis of mesial temporal lobe epilepsy (MTLE). The aim of this study was to investigate the dynamic expression of interleukin (IL)-1β as a proinflammatory cytokine and microRNA (miR)-146a as a posttranscriptional inflammation-associated microRNA (miRNA) in the hippocampi of an immature rat model and children with MTLE.. To study the expression of IL-1β and miR-146a, we performed a reverse transcription polymerase chain reaction, Western blot, and real-time quantitative PCR on the hippocampi of immature rats at 11 days of age. Expression was monitored in the acute, latent, and chronic stages of disease (2 h and 3 and 8 weeks after induction of lithium-pilocarpine status epilepticus, respectively), and in control hippocampal tissues corresponding to the same timeframes. Similar expression methods were applied to hippocampi obtained from children with MTLE and normal controls.. The expression of IL-1β and miR-146a in both children and immature rats with MTLE differs according to the stage of MTLE development. Both IL-1β and miR-146a are significantly up-regulated, but in opposite ways: IL-1β expression is highest in the acute stage, when expression of miR-146a is at its lowest level; miR-146a expression is highest in the latent stage, when IL-1β expression is at its lowest level. Both IL-1β and miR-146a are up-regulated in the chronic stage, but not as much as in the other stages.. Our study is the first to focus on the expression of miR-146a in the immature rat model of lithium-pilocarpine MTLE and in children with MTLE. We have detected that the expression of proinflammatory cytokine IL-1β and posttranscriptional inflammation-associated miR-146a is variable depending on the disease stage. Furthermore, both IL-1β and miR-146a are up-regulated in immature rats and children with MTLE. Our findings elucidate the role of inflammation in the pathogenesis of MTLE in the immature rat model and children. Therefore, modulation of the IL-1β-miR-146a axis may be a novel therapeutic target in the treatment of MTLE. Topics: Analysis of Variance; Animals; Animals, Newborn; Child; Disease Models, Animal; Epilepsy, Temporal Lobe; Female; Hippocampus; Humans; Interleukin-1beta; Lithium Chloride; Male; MicroRNAs; Pilocarpine; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Up-Regulation | 2012 |
Neuroaminidase reduces interictal spikes in a rat temporal lobe epilepsy model.
Interictal spikes have been implicated in epileptogenesis and cognitive dysfunction in epilepsy. Unfortunately, antiepileptic drugs have shown poor efficacy in suppressing interictal discharges; novel therapies are needed. Surface charge on neuronal membranes provides a novel target for abolishing interictal spikes. This property can be modulated through the use of neuraminidase, an enzyme that decreases the amount of negatively charged sialic acid. In the present report we determined whether applying neuraminidase to brains of rats with a history of status epilepticus would reduce number of interictal discharges. Following pilocarpine-induced status epilepticus, rats received intrahippocampal injections of neuraminidase, which significantly decreased the number of interictal spikes recorded in the CA1 region. This study provides evidence that sialic acid degradation can reduce the number of interictal spikes. Furthermore, the results suggest that modifying surface charge created by negatively charged sialic acid may provide new opportunities for reducing aberrant epileptiform events in epilepsy. Topics: Animals; Anticonvulsants; Convulsants; Electroencephalography; Epilepsy, Temporal Lobe; Evoked Potentials; Gliosis; Hippocampus; Injections; Injections, Intraperitoneal; Lithium Chloride; Male; N-Acetylneuraminic Acid; Neuraminidase; Pilocarpine; Rats; Rats, Sprague-Dawley; Signal Processing, Computer-Assisted; Status Epilepticus | 2011 |
Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms.
Depression represents one of the most common comorbidities of temporal lobe epilepsy (TLE), and has profound negative impact on the quality of life of patients with TLE. However, causes and mechanisms of depression in TLE remain poorly understood, and effective therapies are lacking. We examined whether a commonly used model of TLE in rats could be used as a model of comorbidity between epilepsy and depression suitable for both mechanistic studies and for the development of mechanism-based antidepressant therapies. We established that animals that had been subjected to lithium chloride and pilocarpine status epilepticus (SE) and developed spontaneous recurrent seizures, exhibited a set of impairments congruent with a depressive state: behavioral equivalents of anhedonia and despair, dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, and compromised raphe-hippocampal serotonergic transmission. Pharmacologic studies have suggested that depressive impairments following SE develop as a result of enhanced interleukin-1beta signaling in the hippocampus, which leads to depression via inducing perturbations in the HPA axis and subsequent deficit in the raphe-hippocampal serotonergic transmission. Topics: Animals; Convulsants; Depressive Disorder; Disease Models, Animal; Epilepsy, Temporal Lobe; Hippocampus; Humans; Hypothalamo-Hypophyseal System; Interleukin-1beta; Lithium Chloride; Pilocarpine; Pituitary-Adrenal System; Raphe Nuclei; Rats; Receptors, Glucocorticoid; Serotonin; Signal Transduction; Status Epilepticus; Synaptic Transmission | 2010 |
Ketogenic diet exhibits neuroprotective effects in hippocampus but fails to prevent epileptogenesis in the lithium-pilocarpine model of mesial temporal lobe epilepsy in adult rats.
Although the number of antiepileptic drugs (AEDs) is increasing, none displays neuroprotective or antiepileptogenic properties that could prevent status epilepticus (SE)-induced drug-resistant epilepsy. Ketogenic diet (KD) and calorie restriction (CR) are proposed as alternative treatments in epilepsy. Our goal was to assess the neuroprotective or antiepileptogenic effect of these diets in a well-characterized model of mesial temporal lobe epilepsy following initial SE induced by lithium-pilocarpine in adult rats.. Seventy-five P50 male Wistar rats were fed a specific diet: normocalorie carbohydrate (NC), hypocalorie carbohydrate (HC), normocalorie ketogenic (NK), or hypocalorie ketogenic (HK). Rats were subjected to lithium-pilocarpine SE, except six NC to constitute a control group for histology (C). Four rats per group were implanted with epidural electrodes to record electroencephalography (EEG) during SE and the next six following days. From the seventh day, the animals were video-recorded 10 h daily to determine latency to epilepsy onset. Neuronal loss in hippocampus and parahippocampal cortices was analyzed 1 month after the first spontaneous seizure.. After lithium-pilocarpine injection, neither KD nor CR modified SE features or latency to epilepsy. In hippocampal layers, KD or CR exhibited a neuroprotective potential without cooperative effect. Parahippocampal cortices were not protected by the diets.. The antiepileptic effect of KD and/or CR is overwhelmed by lithium-pilocarpine injection. The isolated protection of hippocampal layers induced by KD or CR or their association failed to modify the course of epileptogenesis. Topics: Animals; Anticonvulsants; Caloric Restriction; Cerebral Cortex; Diet, Ketogenic; Dietary Carbohydrates; Disease Models, Animal; Drug Resistance; Electroencephalography; Epilepsy, Temporal Lobe; Hippocampus; Humans; Lithium Chloride; Male; Neuroprotective Agents; Pilocarpine; Rats; Rats, Wistar; Status Epilepticus | 2010 |
Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy.
Depression is frequently reported in epilepsy patients; however, mechanisms of co-morbidity between epilepsy and depression are poorly understood. An important mechanism of depression is disinhibition within the hypothalamo-pituitary-adrenocortical (HPA) axis. We examined the functional state of the HPA axis in a rat model of co-morbidity between temporal lobe epilepsy and depression. Epilepsy was accompanied by the interictal elevation of plasma corticosterone, and by the positively combined dexamethasone/corticotropin releasing hormone test. The extent of the HPA hyperactivity was independent of recurrent seizures, but positively correlated with the severity of depressive behavior. We suggest that the observed hyperactivity of the HPA axis may underlie co-morbidity between epilepsy and depression. Topics: Animals; Behavior, Animal; Corticosterone; Depression; Disease Models, Animal; Electrodes, Implanted; Epilepsy, Temporal Lobe; Hypothalamo-Hypophyseal System; Lithium Chloride; Male; Microelectrodes; Pilocarpine; Pituitary-Adrenal System; Psychiatric Status Rating Scales; Radioimmunoassay; Random Allocation; Rats; Rats, Wistar; Seizures; Stress, Psychological | 2009 |
Seizure susceptibility and the brain regional sensitivity to oxidative stress in male and female rats in the lithium-pilocarpine model of temporal lobe epilepsy.
Several studies have shown the existence of sex differences in the sensitivity to various convulsants in animals and to the development of some epilepsy types in humans. The purpose of this study was to investigate whether there are sex differences in seizure susceptibility and sensitivity of different brain regions to oxidative stress in rats with status epilepticus (SE) induced by lithium-pilocarpine administration, that provides a common experimental model of temporal lobe epilepsy (TLE) in humans. Latencies to isolated full limbic seizures or SE onset as well as the number of the animals presenting full limbic seizures, SE or full limbic seizures that progressed to SE were recorded for 2 h after pilocarpine administration. Number of animals which survived 24 h after SE onset was also monitored. Levels of lipid peroxidation as well as the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the piriform and entorhinal cortices, temporal neocortex, thalamus, and hippocampus in rats of both sexes, at 24 h after SE onset were determined. Results of our study showed that males developed full limbic seizures and SE more rapidly and in greater number than females. Levels of lipid peroxidation in all brain regions examined, the SOD activities in the piriform and entorhinal cortices, and temporal neocortex as well as the GSH-Px activities in the piriform and entorhinal cortices, and thalamus were significantly higher in rats with SE in comparison to the values of mentioned biochemical parameters in rats of the control groups. Lipid peroxidation level in the temporal neocortex as well as the GSH-Px activity in the hippocampus in male rats were significantly higher in comparison to the values registered in females. With the exception of the thalamus, where SOD activity in male rats with SE was significantly higher in relation to the respective control group and also to females with SE, sex differences in the response of other brain regions investigated to oxidative stress were not obtained, at 24 h after SE. Topics: Animals; Brain; Disease Models, Animal; Disease Susceptibility; Epilepsy, Temporal Lobe; Female; Glutathione Peroxidase; Lipid Peroxidation; Lithium Chloride; Male; Oxidative Stress; Pilocarpine; Rats; Rats, Wistar; Sex Characteristics; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances | 2009 |
Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine.
Depression represents one of the most common comorbidities in patients with epilepsy. However, the mechanisms of depression in epilepsy patients are poorly understood. Establishment of animal models of this comorbidity is critical for both understanding the mechanisms of the condition, and for preclinical development of effective therapies. The current study examined whether a commonly used animal model of temporal lobe epilepsy (TLE) is characterized by behavioural and biochemical alterations involved in depression. Male Wistar rats were subjected to LiCl and pilocarpine status epilepticus (SE). The development of chronic epileptic state was confirmed by the presence of spontaneous seizures and by enhanced brain excitability. Post-SE animals exhibited increase in immobility time under conditions of forced swim test (FST) which was indicative of despair-like state, and loss of taste preference in saccharin solution consumption test which pointed to the symptomatic equivalence of anhedonia. Biochemical studies revealed compromised serotonergic transmission in the raphe-hippocampal serotonergic pathway: decrease of serotonin (5-HT) concentration and turnover in the hippocampus, measured by high performance liquid chromatography, and decrease of 5-HT release from the hippocampus in response to raphe stimulation, measured by fast cyclic voltammetry. Administration of fluoxetine (FLX, 20 mg/kg/day for 10 days) to naive animals significantly shortened immobility time under conditions of FST, and inhibited 5-HT turnover in the hippocampus. In post-SE rats FLX treatment led to a further decrease of hippocampal 5-HT turnover; however, performance in FST was not improved. At the same time, FLX reversed SE-induced increase in brain excitability. In summary, our studies provide initial evidence that post-SE model of TLE might serve as a model of the comorbidity of epilepsy and depression. The finding that behavioural equivalents of depression were resistant to an antidepressant medication suggested that depression in epilepsy might have distinct underlying mechanisms beyond alterations in serotonergic pathways. Topics: Animals; Behavior, Animal; Depression; Epilepsy, Temporal Lobe; Fluoxetine; Hippocampus; Lithium Chloride; Male; Models, Animal; Pilocarpine; Rats; Rats, Wistar; Selective Serotonin Reuptake Inhibitors; Serotonin; Status Epilepticus | 2008 |
[Correlation between hippocampal mossy fiber sprouting and synaptic reorganization and mechanisms of temporal lobe epilepsy].
To explore the effects of the ultrastructural features of sprouted mossy fiber synapses in the mechanism of temporal lobe epilepsy. To explore the correlation between axon guidance molecule-netrin-1 gene expression and mossy fiber synaptic reorganization.. Sixty-one SD rats underwent intraperitoneal injection of lithium chloride and pilocarpine to establish models of status epilepticus characterized with temporal lobe epilepsy. Nineteen rats were used as controls. One, 2, and 4 weeks after the injection, a certain numbers of rat were killed with their brains taken out. The sprouted mossy fiber synaptic terminals were labeled by Timm histochemistry and the ultrastructure of new synapses were observed by electron microscopy. By in situ hybridization, the mRNA expression of netrin-1 gene was observed.. The sprouted mossy fiber synapses in epileptic rats most commonly formed asymmetric synapses with dendritic spines and occasionally with granule cell somata. Seven days after the injection, up-regulation of netrin-1 mRNA expression was seen in the dentate granule cell layers of hippocampus and continued to 4 weeks after the injection. The time course of the increase of netrin-1 mRNA in the dentate granule cell layers was correlated with the time course of mossy fiber sprouting and synaptic reorganization in hippocampus.. The ultrastructural features of sprouted mossy fiber synapses support the viewpoint that the reorganization of synapses prominently involves the formation of recurrent excitatory circuits. The axon guidance molecule- netrin-1 plays an important role in the process of mossy fiber axonal outgrowth and synaptogenesis in the hippocampal dentate gyrus. Topics: Animals; Disease Models, Animal; Epilepsy; Epilepsy, Temporal Lobe; In Situ Hybridization; Lithium Chloride; Male; Microscopy, Electron; Mossy Fibers, Hippocampal; Nerve Growth Factors; Netrin-1; Pilocarpine; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Synapses; Tumor Suppressor Proteins | 2007 |
Pathogenesis and pharmacology of epilepsy in the lithium-pilocarpine model.
To try to identify the critical structures during epileptogenesis, we used the lithium-pilocarpine model that reproduces most clinical and neuropathological features of temporal lobe epilepsy (TLE). We used imaging techniques as well as a disease modifying approach and pharmacological strategy. With [14C]-2-deoxyglucose autoradiography, we assessed changes in cerebral glucose utilization. T2-weighted magnetic resonance imaging (MRI, 4.7 T) allowed follow-up of structures involved in epileptogenesis. A potential disease-modifying effect was studied using preconditioning with brief seizures (amygdala kindling, maximal electroshocks) and pharmacological strategies including vigabatrin (250 mg/kg), caffeine (0.3 g/L in drinking water), topiramate (10-60 mg/kg), pregabalin (50 mg/kg followed by 10 mg/kg), or RWJ-333369 (10-120 mg/kg). In adult and PN21 rats that became epileptic, entorhinal, and piriform cortices were the initial structures exhibiting significant signal changes on MRI scans, from 6 h after status epilepticus (SE) onset, reflecting neuronal death. In PN21 rats that did not become epileptic, no signal occurred in parahippocampal cortices. In hippocampus, MRI signal change appeared 36-48 h after SE, and progressively worsened to sclerosis. During the latent and chronic phases, the metabolic level in the hilus of adult and PN21 epileptic rats was normal although neuronal loss reached 60-75%. Protection limited to CA1 and/or CA3 (caffeine, topiramate, vigabatrin, amygdala kindling) did not affect the latency to spontaneous seizures. Protection limited to the entorhinal and piriform cortices (pregabalin) delayed epileptogenesis. The combined protection of Ammon's horn and parahippocampal cortices (RWJ-333369) prolonged the latency before the onset of seizures in a dose-dependent manner or, in some cases, prevented the epilepsy. The entorhinal and piriform cortices are critically involved in the early phase of the epileptogenesis while the hilus may initiate and/or maintain epileptic seizures. Pharmacological protection of the basal cortices is necessary for a beneficial disease-modifying effect but this must be combined with protection of the hippocampus to prevent epileptogenesis in this model of TLE. Topics: Animals; Animals, Newborn; Anticonvulsants; Autoradiography; Cell Count; Cerebral Cortex; Deoxyglucose; Disease Models, Animal; Electroencephalography; Electroshock; Entorhinal Cortex; Epilepsy, Temporal Lobe; Fructose; Glucose; Hippocampus; Kindling, Neurologic; Lithium Chloride; Magnetic Resonance Imaging; Olfactory Pathways; Pilocarpine; Rats; Rats, Sprague-Dawley; Status Epilepticus; Topiramate; Vigabatrin | 2007 |
EAAC1 glutamate transporter expression in the rat lithium-pilocarpine model of temporal lobe epilepsy.
Glutamate excitotoxicity has been involved in the pathophysiology of epilepsy. Normal functioning of glutamate transporters clears the synaptically released glutamate to prevent excitotoxic neuronal death. Using densitometric immunohistochemical analysis, we examined the temporal expression of the neuronal glutamate transporter (EAAC1) in the lithium-pilocarpine rat model of temporal lobe epilepsy. During the acute period of lithium-pilocarpine-induced status epilepticus, EAAC1 transporter expression increased in the pyramidal neurons of cornus ammonis (CA)1, CA2 and CA3 (fields of the hippocampus), in dentate gyrus (DG) granule cells and in olfactory tubercle (Tu). During the latent period, EAAC1 expression was strongly expressed in the DG granular and molecular layers, Tu, cerebral cortex and septum, and went back to control levels in CA1, CA2 and CA3 layers. The overexpression of EAAC1 occurred mainly in structures prone to develop Fluoro-Jade-B-positive degenerating neurons. It is, however, not clear to what extent the overexpression of EAAC1 contributes to epileptogenesis and in which area it may represent a preventive or compensatory or response to injury. Topics: Animals; Brain; Brain Chemistry; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 3; Fluoresceins; Immunohistochemistry; Lithium Chloride; Nerve Degeneration; Organic Chemicals; Pilocarpine; Rats; Rats, Sprague-Dawley; Status Epilepticus | 2006 |
Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy.
Spontaneous seizures in rats emerge several weeks after induction of status epilepticus with pharmacologic treatment or electrical stimulation, providing an animal model for human temporal lobe epilepsy. In this study, we investigated whether status epilepticus caused changes in the function of voltage-gated sodium channels in entorhinal cortex layer V neurons, a cellular group important for the genesis of limbic seizures.. We induced status epilepticus in rats, by using lithium-pilocarpine, and then 2-12 weeks later, used whole-cell voltage-clamp to examine voltage-activated sodium currents of acutely dissociated layer V neurons.. Transient sodium currents of entorhinal cortex layer V neurons isolated from 9- to 12-week post-status epilepticus rats were similar to currents in age-matched controls; however, low-threshold persistent sodium currents were significantly larger. This increase in persistent activity was not seen 2-3 weeks after pilocarpine treatment; thus it occurred after a delay comparable to the delay in the appearance of spontaneous seizures.. Increased persistent currents are expected to accentuate neuronal excitability and thus may contribute to the genesis of spontaneous seizures after status epilepticus. Topics: Animals; Cells, Cultured; Disease Models, Animal; Entorhinal Cortex; Epilepsy, Temporal Lobe; Kindling, Neurologic; Lithium Chloride; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Pilocarpine; Rats; Rats, Long-Evans; Sodium Channels; Status Epilepticus | 2003 |
Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model.
Patients with temporal lobe epilepsy (TLE) usually had an initial precipitating injury in early childhood. However, epilepsy does not develop in all children who have undergone an early insult. As in patients, the consequences of the lithium-pilocarpine-induced status epilepticus (SE) are age dependent, and only a subset of 21-day-old rats will develop epilepsy. Thus with magnetic resonance imaging (MRI), we explored the differences in the evolution of lesions in these two populations of rats.. SE was induced in 21-day-old rats by the injection of lithium and pilocarpine. T2-weighted images and T2 relaxation-time measurements were used for detection of lesions from 6 h to 4 months after SE.. Three populations of rats could be distinguished. The first one had neither MRI anomalies nor modification of the T2 relaxation time, and these rats did not develop epilepsy. In the second one, a hypersignal appeared at the level of the piriform and entorhinal cortices 24 h after SE (increase of 49% of the T2 relaxation time in the piriform cortex) that began to disappear 48-72 h after SE; epilepsy developed in all these animals. The third population of rats showed a more moderate increase of the T2 relaxation time in cortices (14% in the piriform cortex) that could not be seen on T2-weighted images. Epilepsy developed in all these rats. Only in a subpopulation of the 21-day-old rats with epilepsy did hippocampal sclerosis develop.. These results suggest that the injury of the piriform and entorhinal cortices during SE play a critical role for the installation of the epileptic networks and the development of epilepsy. Topics: Age Factors; Animals; Brain Diseases; Cerebral Cortex; Disease Models, Animal; Entorhinal Cortex; Epilepsy, Temporal Lobe; Female; Lithium Chloride; Magnetic Resonance Imaging; Male; Pilocarpine; Probability; Rats; Rats, Sprague-Dawley; Status Epilepticus | 2002 |
Vigabatrin protects against hippocampal damage but is not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy.
In temporal lobe epilepsy (TLE), the nature of the structures involved in the development of the epileptogenic circuit is still not clearly identified. In the lithium-pilocarpine model, neuronal damage occurs both in the structures belonging to the circuit of initiation and maintenance of the seizures (forebrain limbic system) as well as in the propagation areas (cortex and thalamus) and in the circuit of remote control of seizures (substantia nigra pars reticulata). In order to determine whether protection of some brain areas could prevent the epileptogenesis induced by status epilepticus (SE) and to identify the cerebral structures involved in the genesis of TLE, we studied the effects of the chronic exposure to Vigabatrin (gamma-vinyl-GABA, GVG) on neuronal damage and epileptogenesis induced by lithium-pilocarpine SE. The animals were subjected to SE and GVG treatment (250 mg/kg) was initiated at 10 min after pilocarpine injection and maintained daily for 45 days. These pilo-GVG rats were compared with rats subjected to SE followed by a daily saline treatment (pilo-saline) and to control rats not subjected to SE (saline-saline). GVG treatment induced a marked, almost total neuroprotection in CA3, an efficient protection in CA1 and a moderate one in the hilus of the dentate gyrus while damage in the entorhinal cortex was slightly worsened by the treatment. All pilo-GVG and pilo-saline rats became epileptic after the same latency. Glutamic acid decarboxylase (GAD67) immunoreactivity was restored in pilo-GVG rats compared with pilo-saline rats in all areas of the hippocampus, while it was increased over control levels in the optical layer of the superior colliculus and the substantia nigra pars reticulata. Thus, the present data indicate that neuroprotection of principal cells in the Ammon's horn of the hippocampus is not sufficient to prevent epileptogenesis, suggesting that the hilus and extra-hippocampal structures, that were not protected in this study, may play a role in the genesis of spontaneous recurrent seizures in this model. Furthermore, the study performed in non-epileptic rats indicates that chronic treatment with a GABAmimetic drug upregulates the expression of the protein GAD67 in specific areas of the brain, independently from the seizures. Topics: Animals; Anticonvulsants; Antimanic Agents; Electroencephalography; Epilepsy, Temporal Lobe; Glutamate Decarboxylase; Hippocampus; Isoenzymes; Lithium Chloride; Male; Models, Animal; Muscarinic Agonists; Pilocarpine; Rats; Rats, Wistar; Vigabatrin | 2001 |