lithium-chloride has been researched along with Brain-Ischemia* in 10 studies
10 other study(ies) available for lithium-chloride and Brain-Ischemia
Article | Year |
---|---|
Lithium chloride promotes neural functional recovery after local cerebral ischaemia injury in rats through Wnt signalling pathway activation.
Lithium chloride (LiCl) has a significant neuroprotective effect in cerebral ischaemia. However, to date, there is a paucity of evidence on the role of LiCl in neural restoration after brain ischaemia and the signalling pathways involved remain unclear.. Therefore, to address this gap, the middle cerebral artery occlusion (MCAO) rat model was used to simulate human ischaemia stroke. Male Sprague-Dawley rats were given MCAO for 90 min followed by reperfusion, and Dickkopf-1 (DKK1, 5.0 μg/kg) was administered half an hour before MCAO. Rats were then treated with hypodermic injection of LiCl (2.0 mmol/kg) twice a day for 1 week. After treatment, cognitive impairment was assessed by the Morris water maze test. Neurological deficit score, 2,3,5-triphenyl tetrazolium chloride staining, brain water content, and histopathology were used to evaluate brain damage. Enzyme-linked immunosorbent assay was used to measure oxidative stress damage and inflammatory cytokines. Apoptosis of the hippocampal neurons was tested by western blot. The key factors of Wnt signalling pathway in the ischaemic penumbra were detected by immunofluorescence staining and quantitative real-time polymerase chain reaction.. Current experimental results showed that LiCl treatment significantly improved the impaired spatial learning and memory ability, suppressed oxidative stress, inflammatory reaction, and neuron apoptosis accompanied by attenuating neuronal damage, which subsequently decreased the brain oedema, infarct volume and neurological deficit. Furthermore, the treatment of LiCl activated Wnt signalling pathway. Interestingly, the aforementioned effects of LiCl treatment were markedly reversed by administration of DKK1, an inhibitor of Wnt signalling pathway.. These results indicate that LiCl exhibits neuroprotective effects in focal cerebral ischaemia by Wnt signalling pathway activation, and it might have latent clinical application for the prevention and treatment of ischaemic stroke. Topics: Animals; Brain Injuries; Brain Ischemia; Humans; Infarction, Middle Cerebral Artery; Ischemia; Lithium Chloride; Male; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stroke | 2023 |
Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia foll
Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity.. Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting.. Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD.. Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain. Topics: Animals; Brain Ischemia; Brain-Derived Neurotrophic Factor; Disks Large Homolog 4 Protein; Edetic Acid; GAP-43 Protein; Glucose; Glycogen Synthase Kinase 3 beta; Infarction, Middle Cerebral Artery; Lithium; Lithium Chloride; Male; N-Methylaspartate; Neurons; Neuroprotective Agents; Oxygen; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sodium Dodecyl Sulfate | 2022 |
Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice.
Although upregulation of endothelial Wnt/β-catenin signaling may be used to treat blood-brain barrier (BBB) breakdown caused by cerebral ischemia/reperfusion injury, no agents based on this mechanism are available clinically. Lithium, a medication used for treating bipolar mood disorders, upregulates Wnt/β-catenin signaling, but whether lithium alleviates BBB breakdown after ischemic stroke by upregulating endothelial Wnt/β-catenin signaling is unclear. Here, we evaluated the BBB-protective effect of lithium in adult mice with 1-h middle cerebral artery occlusion and 48-h reperfusion (MCAO/R) by determining neurological outcomes, BBB function and related molecular components. Furthermore, we assessed the effect and dependence of lithium on Wnt/β-catenin signaling in brain microvascular endothelial cells in cell culture and in mice with conditional endothelial knockout of Wnt7 co-receptor Gpr124. Our data show that lithium treatment (3 mmol/kg) significantly decreased infarct volume (34.1 ± 1.8% versus 58.3 ± 2.8% in vehicle controls, P < 0.0001) and improved neurological outcomes of mice following MCAO/R. Importantly, lithium significantly increased BBB integrity shown by reduction of Evans blue leakage (by 45.7%, P = 0.0064) and blood IgG extravasation (by 65.8%, P < 0.0001) into infarcted brain tissue. Mechanistically, lithium upregulated the activity of endothelial Wnt/β-catenin signaling in vivo and in vitro, increased the protein levels of tight junctions (Claudin-5 and ZO-1), and reduced MMP-9 expression. Furthermore, the protective effect of lithium on cerebral damage and BBB integrity was abolished in endothelial Gpr124 knockout mice, indicating the protection of lithium on BBB was mainly dependent on the Gpr124-mediated endothelial Wnt/β-catenin signaling. Taken together, our findings indicate that lithium may serve as a therapeutic candidate for treating the BBB breakdown in the early stage of ischemic stroke following reperfusion therapy. Topics: Adjuvants, Immunologic; Animals; beta Catenin; Blood-Brain Barrier; Brain Ischemia; Endothelial Cells; Lithium Chloride; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Reperfusion Injury; Up-Regulation; Wnt Signaling Pathway | 2021 |
GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion.
The NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a critical role in protecting against oxidative stress in brain ischemia and reperfusion injury. Glycogen synthase kinase 3β (GSK-3β) may play a critical role in regulating Nrf2 in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner. However, the relationship between GSK-3β and Nrf2 in brain ischemia and reperfusion injury is not clear. In this study, we explored the mechanisms through which GSK-3β regulates Nrf2 and Nrf-2/ARE pathways in vitro and in vivo. We used oxygen and glucose deprivation/reoxygenation (OGD/R) in primary cultured cortical neurons and a middle cerebral artery occlusion-reperfusion (MCAO/R) rat model to mimic ischemic insult. In this study, GSK-3β siRNA and inhibitors (SB216763 and LiCl) were used to inhibit GSK-3β in vitro and in vivo. After inhibiting GSK-3β, expression of total and nuclear Nrf2, Nrf2-ARE binding activity, and expression of Nrf2/ARE pathway-driven genes HO-1 and NQO-1 increased. Overexpression of GSK-3β yielded opposite results. These results suggest that GSK-3β downregulates Nrf2 and the Nrf2/ARE pathway in brain ischemia and reperfusion injury. GSK-3β may be an endogenous antioxidant relevant protein, and may represent a new therapeutic target in treatment of ischemia and reperfusion injury. Topics: Animals; Brain Ischemia; Cells, Cultured; Disease Models, Animal; Down-Regulation; Gene Expression Regulation; Gene Silencing; Glycogen Synthase Kinase 3 beta; Indoles; Lithium Chloride; Male; Maleimides; Neurons; NF-E2-Related Factor 2; Rats; Signal Transduction | 2016 |
Protective effects of lithium chloride treatment on repeated cerebral ischemia-reperfusion injury in mice.
Lithium is a renowned pharmacological treatment for mood disorders. Recent studies suggest that lithium chloride (LiCl) performs neuroprotective effects on cerebrovascular diseases. The present study is to investigate the protective effects of LiCl treatment on the hippocampus of mice with repeated cerebral ischemia-reperfusion (IR). Mice were subjected to IR through repeated bilateral common carotid artery occlusion. LiCl (2 mmol/kg) was administered daily postoperative until the mice were sacrificed. Swimming time was prolonged and error count increased in the model group through learning and memory tests. Pathological changes such as reduction in cell count and obvious pyknosis were seen in haematoxylin-eosin staining, and apoptosis was detected by TUNEL staining in hippocampal CA1 regions in the model group. The model animals exhibited more phospho-Akt Ser473 and phospho-GSK3β Ser9 than the sham group when measured by Western blot. LiCl treatment mitigated the prolonged swimming time and the increased error count compared with NaCl-treated group and improved the pathological changes. Meanwhile, LiCl further up-regulated phospho-Akt Ser473 and phospho-GSK3β Ser9 expression. The highest level of diversity was at 4 weeks postoperative. Therefore, repeated IR can severely damage the hippocampus and decrease the learning and memory functions in mice. Changes in the Akt and GSK3β protein activity were involved in the IR process. LiCl treatment exerted a neuroprotective effect on learning and memory by potentiating the Akt/GSK3β cell-signaling pathway. Topics: Animals; Apoptosis; Brain Ischemia; CA1 Region, Hippocampal; Disease Models, Animal; Lithium Chloride; Male; Maze Learning; Memory; Mice, Inbred C57BL; Neurons; Neuroprotective Agents; Random Allocation; Reperfusion Injury; Swimming; Time Factors; Treatment Outcome | 2015 |
Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus.
Lithium has been reported to have neuroprotective effects, but the preventive and treated role on cognition impairment and the underlying mechanisms have not been determined. In the present study, C57Bl/6 mice were subjected to repeated bilateral common carotid artery occlusion to induce the learning and memory deficits. 2 mmol/kg or 5 mmol/kg of lithium chloride (LiCl) was injected intraperitoneally per day before (for 7 days) or post (for 28 days) the operation. This repeated cerebral ischemia-reperfusion (IR) induced dynamic overexpression of ratio of Bcl-2/Bax and BDNF in hippocampus of mice. LiCl pretreatment and treatment significantly decreased the escape latency and increased the percentage of time that the mice spent in the target quadrant in Morris water maze. 2 mmol/kg LiCl evidently reversed the morphologic changes, up-regulated the survival neuron count and increased the BDNF gene and protein expression. 5 mmol/kg pre-LiCl significantly increased IR-stimulated reduce of Bcl-2/Bax and p-CREB/CREB. These results described suggest that pre-Li and Li treatment may induce a pronounced prevention on cognitive impairment. These effects may relay on the inhibition of apoptosis and increasing BDNF and p-CREB expression. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Brain-Derived Neurotrophic Factor; Carotid Artery Diseases; Cell Survival; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Hippocampus; Learning Disabilities; Lithium Chloride; Male; Maze Learning; Memory Disorders; Mice, Inbred C57BL; Neurons; Nootropic Agents; Proto-Oncogene Proteins c-bcl-2; Random Allocation; Reperfusion Injury; Spatial Memory | 2015 |
Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia.
Inhibition of the canonical Wnt pathway has been implicated in the pathophysiology of neuronal death. Here, we report that the secreted Wnt antagonist, Dickkopf-1 (Dkk-1) is rapidly induced in neurons after induction of focal brain ischemia. In rats undergoing transient focal ischemia in response to brain infusion of endothelin-1, Dkk-1 was induced in neurons of the ischemic core and the penumbra region. Induction of Dkk-1 was associated with a reduced expression of beta-catenin (a downstream signaling molecule of the canonical Wnt pathway), and was not observed in neurons expressing the protective protein, heat shock protein-70. Treatment with lithium ions, which, inter alia, rescue the canonical Wnt pathway, was highly protective against ischemic damage. Dkk-1 was also induced in cortical neurons of mice undergoing permanent middle cerebral artery (MCA) occlusion. This model allowed us to compare wild-type mice with doubleridge mice, which are characterized by a reduced expression of Dkk-1. Doubleridge mice showed an attenuated reduction of beta-catenin and a reduced infarct volume in response to MCA occlusion, providing a direct demonstration that Dkk-1 contributes to the pathophysiology of ischemic neuronal damage. These data rise the interesting possibility that Dkk-1 antagonists or drugs that rescue the Wnt pathway might be neuroprotective in stroke. Topics: Animals; beta Catenin; Brain Ischemia; Cell Death; Cerebral Arteries; Disease Models, Animal; Endothelin-1; Infusions, Intra-Arterial; Intercellular Signaling Peptides and Proteins; Lithium Chloride; Male; Mice; Mice, Inbred C3H; Mice, Transgenic; Rats; Wnt Proteins | 2009 |
Synergistic effects of prostaglandin E1 and lithium in a rat model of cerebral ischemia.
Heat shock proteins (HSPs) are important regulators of cellular survival and exert neuroprotective effects against cerebral ischemia. Both prostaglandin E1 (PGE1) and lithium have been reported to protect neurons against ischemic injury. The present study was undertaken to examine if lithium could potentiate the neuroprotection of PGE1 against cerebral ischemia, and if the synergetic effects take place at the level of HSPs.. Brain ischemia was induced by a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were pretreated with subcutaneous injection of lithium for 2 d and a single intravenous administration of PGE1 immediately after ischemic insult. Cerebrocortical blood flow of each group was closely monitored prior to onset of ischemia, 5 min, 15 min, 30 min and 60 min after surgical operation. Body temperature was measured before, 5 min, 2 h and 24 h after the onset of pMCAO. The infarct volume, brain edema and motor behavior deficits were analyzed 24 h after ischemic insult. Cytoprotective HSP70 and heme oxygenase-1 (HO-1) in the striatum of the ipsilateral hemisphere were detected by immunoblotting. Brain sections from the striatum of the ipsilateral hemisphere were double-labeled with the anti-HSP70 antibody and 4,6-diamidino-2-phenylindole (DAPI).. Treatment with PGE1 (8 and 16 microg/kg, iv) or lithium (0.5 mEq/kg, sc) alone reduced infarct volume, neurological deficits and brain edema induced by focal cerebral ischemia in rats. Moreover, a greater neuroprotection was observed when PGE1 and lithium were given together. Co-administration of PGE1 and lithium significantly upregulated cytoprotective HSP70 and HO-1 protein levels.. Lithium and PGE1 may exert synergistic effects in treatment of cerebral ischemia and thus may have potential clinical value for the treatment of stroke. Topics: Alprostadil; Animals; Body Temperature; Brain Ischemia; Cerebrovascular Circulation; Drug Synergism; Heat-Shock Proteins; Heme Oxygenase-1; Infarction, Middle Cerebral Artery; Lithium Chloride; Male; Middle Cerebral Artery; Rats; Rats, Sprague-Dawley; Vasodilator Agents | 2008 |
Functional MRI of delayed chronic lithium treatment in rat focal cerebral ischemia.
The use of lithium as a neuroprotective agent has been demonstrated using various models in which improvements in infarct size, DNA damage, and neurological function were reported. We further investigated neurohemodynamic aspects of the treatment-associated recovery by assessing the therapeutic efficacy of delayed chronic lithium treatment using functional MRI.. Ipsilesional functional MRI activations in the somatosensory cortex, acquired 2 weeks after the 90-minute transient middle cerebral artery occlusion, were compared between lithium- and saline-treated rats. Specifically, MRI signal changes based on blood oxygenation level dependence and functional cerebral blood volume responses were examined using electrical stimulation of forelimbs. Additional immunohistochemical assays were performed.. The ratio of ipsilesional to contralesional blood oxygenation level dependence response magnitudes significantly improved with lithium treatments. In contrast, the increase of the functional cerebral blood volume response magnitude ratio was not statistically significant. Nonetheless, the lithium treatment induced significant enhancements of total functional MRI activation (defined as a product of activation volume and response magnitude) for both blood oxygenation level dependence and functional cerebral blood volume methods. Increased cerebral blood volume in periinfarct tissues suggests a possible stroke-induced vascular transformation in both saline- and lithium-treated rats; however, other MRI-derived vascular parameters (vascular size index and microvascular volume) and immunohistochemical staining (CD31, glia fibrillary-associated protein, and matrix metalloproteinase-9) may imply that the neoformation of vasculature was differently affected by the lithium treatment.. The delayed chronic lithium treatment enhanced the blood oxygenation level dependence functional MRI response magnitude in the absence of neurological improvement and influenced vascular formation in poststroke animal models. Topics: Animals; Brain Ischemia; Cerebrovascular Circulation; Disease Models, Animal; Infarction, Middle Cerebral Artery; Lithium Chloride; Magnetic Resonance Imaging; Male; Models, Neurological; Neuroprotective Agents; Oxygen; Rats; Rats, Sprague-Dawley | 2008 |
Lithium-induced activation of Akt and CaM kinase II contributes to its neuroprotective action in a rat microsphere embolism model.
Lithium used in bipolar mood disorder therapy protects neurons from brain ischemic cell death. Here, we documented that lithium administration under microsphere-embolism (ME)-induced brain ischemia restored decreased protein kinase B (Akt) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activities 24 h after ischemia in rat brain. Akt activation was associated with increased phosphorylation of its potential targets forkhead transcription factor (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). In parallel with decreased CaMKII autophosphorylation, we also found marked dephosphorylation of tau proteins 24-72 h after ME. Increased protein phosphatase 2A (PP2A) activity was found 24 h after ME. Inhibition of increased PP2A activity by lithium treatment apparently mediated restored tau phosphorylation. Taken together, activation of Akt and CaMKII by lithium was associated with neuroprotective activity in ME-induced neuronal injury. Topics: Animals; Antimanic Agents; Brain Infarction; Brain Ischemia; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Disease Models, Animal; Enzyme Activation; Forkhead Transcription Factors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Intracranial Embolism; Lithium Chloride; Male; Nerve Tissue Proteins; Neuroprotective Agents; Phosphoprotein Phosphatases; Protein Phosphatase 2; Proto-Oncogene Proteins c-akt; Rats; Rats, Wistar; Serine; tau Proteins; Up-Regulation | 2006 |