liriodendrin--1r-(1alpha-3abeta-4beta-6aalpha)-isomer has been researched along with Inflammation* in 1 studies
1 other study(ies) available for liriodendrin--1r-(1alpha-3abeta-4beta-6aalpha)-isomer and Inflammation
Article | Year |
---|---|
Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway.
Eleutheroside E, a major natural bioactive compound in Acanthopanax senticosus (Rupr.etMaxim.) Harms, possesses anti-oxidative, anti-fatigue, anti-inflammatory, anti-bacterial and immunoregulatory effects. High-altitude hypobaric hypoxia affects blood flow and oxygen utilisation, resulting in severe heart injury that cannot be reversed, thereby eventually causing or exacerbating high-altitude heart disease and heart failure. The purpose of this study was to determine the cardioprotective effects of eleutheroside E against high-altitude-induced heart injury (HAHI), and to study the mechanisms by which this happens. A hypobaric hypoxia chamber was used in the study to simulate hypobaric hypoxia at the high altitude of 6000 m. 42 male rats were randomly assigned to 6 equal groups and pre-treated with saline, eleutheroside E 100 mg/kg, eleutheroside E 50 mg/kg, or nigericin 4 mg/kg. Eleutheroside E exhibited significant dose-dependent effects on a rat model of HAHI by suppressing inflammation and pyroptosis. Eleutheroside E downregulated the expressions of brain natriuretic peptide (BNP), creatine kinase isoenzymes (CK-MB) and lactic dehydrogenase (LDH). Moreover, The ECG also showed eleutheroside E improved the changes in QT interval, corrected QT interval, QRS interval and heart rate. Eleutheroside E remarkably suppressed the expressions of NLRP3/caspase-1-related proteins and pro-inflammatory factors in heart tissue of the model rats. Nigericin, known as an agonist of NLRP3 inflammasome-mediated pyroptosis, reversed the effects of eleutheroside E. Eleutheroside E prevented HAHI and inhibited inflammation and pyroptosis via the NLRP3/caspase-1 signalling pathway. Taken together, eleutheroside E is a prospective, effective, safe and inexpensive agent that can be used to treat HAHI. Topics: Altitude; Animals; Anti-Inflammatory Agents; Caspase 1; Eleutherococcus; Heart Injuries; Hypoxia; Inflammasomes; Inflammation; Male; Nigericin; NLR Family, Pyrin Domain-Containing 3 Protein; Prospective Studies; Pyroptosis; Rats | 2023 |