liproxstatin-1 has been researched along with Disease-Models--Animal* in 5 studies
1 review(s) available for liproxstatin-1 and Disease-Models--Animal
Article | Year |
---|---|
Emerging roles of ferroptosis in liver pathophysiology.
Ferroptosis is a widely recognized process of regulated cell death linking redox state, metabolism, and human health. It is considered a defense mechanism against extensive lipid peroxidation, a complex process that may disrupt the membrane integrity, eventually leading to toxic cellular injury. Ferroptosis is controlled by iron, reactive oxygen species, and polyunsaturated fatty acids. Accumulating evidence has addressed that ferroptosis plays an unneglectable role in regulating the development and progression of multiple pathologies of the liver, including hepatocellular carcinoma, liver fibrosis, nonalcoholic steatosis, hepatic ischemia-reperfusion injury, and liver failure. This review may increase our understating of the cellular and molecular mechanisms of liver disease progression and establish the foundation of strategies for pharmacological intervention. Topics: Animals; Antineoplastic Agents; Caffeic Acids; Carcinoma, Hepatocellular; Cycloheximide; Cyclohexylamines; Deferoxamine; Disease Models, Animal; Disease Progression; Fatty Acids, Unsaturated; Ferroptosis; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Iron; Lipid Peroxidation; Liver; Liver Cirrhosis; Liver Failure; Liver Neoplasms; Non-alcoholic Fatty Liver Disease; Phenylenediamines; Quinoxalines; Reactive Oxygen Species; Reperfusion Injury; Spiro Compounds | 2020 |
4 other study(ies) available for liproxstatin-1 and Disease-Models--Animal
Article | Year |
---|---|
Liproxstatin-1 Alleviates Lung Transplantation-induced Cold Ischemia-Reperfusion Injury by Inhibiting Ferroptosis.
Primary graft dysfunction, which is directly related to cold ischemia-reperfusion (CI/R) injury, is a major obstacle in lung transplantation (LTx). Ferroptosis, a novel mode of cell death elicited by iron-dependent lipid peroxidation, has been implicated in ischemic events. This study aimed to investigate the role of ferroptosis in LTx-CI/R injury and the effectiveness of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, in alleviating LTx-CI/R injury.. LTx-CI/R-induced signal pathway alterations, tissue injury, cell death, inflammatory responses, and ferroptotic features were examined in human lung biopsies, the human bronchial epithelial (BEAS-2B) cells, and the mouse LTx-CI/R model (24-h CI/4-h R). The therapeutic efficacy of Lip-1 was explored and validated both in vitro and in vivo.. In human lung tissues, LTx-CI/R activated ferroptosis-related signaling pathway, increased the tissue iron content and lipid peroxidation accumulation, and altered key protein (GPX4, COX2, Nrf2, and SLC7A11) expression and mitochondrial morphology. In BEAS-2B cells, the hallmarks of ferroptosis were significantly evidenced at the setting of both CI and CI/R compared with the control, and the effect of adding Lip-1 only during CI was much better than that of only during reperfusion by Cell Counting Kit-8. Furthermore, Lip-1 administration during CI markedly relieved LTx-CI/R injury in mice, as indicated by significant improvement in lung pathological changes, pulmonary function, inflammation, and ferroptosis.. This study revealed the existence of ferroptosis in the pathophysiology of LTx-CI/R injury. Using Lip-1 to inhibit ferroptosis during CI could ameliorate LTx-CI/R injury, suggesting that Lip-1 administration might be proposed as a new strategy for organ preservation. Topics: Animals; Disease Models, Animal; Ferroptosis; Humans; Iron; Lung Transplantation; Mice; Reperfusion Injury | 2023 |
Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis.
Renal fibrosis is a common pathological process that occurs with diverse etiologies in chronic kidney disease. However, its regulatory mechanisms have not yet been fully elucidated. Ferroptosis is a form of non-apoptotic regulated cell death driven by iron-dependent lipid peroxidation. It is currently unknown whether ferroptosis is initiated during unilateral ureteral obstruction (UUO)-induced renal fibrosis and its role has not been determined. In this study, we demonstrated that ureteral obstruction induced ferroptosis in renal tubular epithelial cells (TECs) in vivo. The ferroptosis inhibitor liproxstatin-1 (Lip-1) reduced iron deposition, cell death, lipid peroxidation, and inhibited the downregulation of GPX4 expression induced by UUO, ultimately inhibiting ferroptosis in TECs. We found that Lip-1 significantly attenuated UUO-induced morphological and pathological changes and collagen deposition of renal fibrosis in mice. In addition, Lip-1 attenuated the expression of profibrotic factors in the UUO model. In vitro, we used RSL3 treatment and knocked down of GPX4 level by RNAi in HK2 cells to induce ferroptosis. Our results indicated HK2 cells secreted various profibrotic factors during ferroptosis. Lip-1 was able to inhibit ferroptosis and thereby inhibit the secretion of the profibrotic factors during the process. Incubation of kidney fibroblasts with culture medium from RSL3-induced HK2 cells promoted fibroblast proliferation and activation, whereas Lip-1 impeded the profibrotic effects. Our study found that Lip-1 may relieve renal fibrosis by inhibiting ferroptosis in TECs. Mechanistically, Lip-1 could reduce the activation of surrounding fibroblasts by inhibiting the paracrine of profibrotic factors in HK2 cells. Lip-1 may potentially be used as a therapeutic approach for the treatment of UUO-induced renal fibrosis. Topics: Animals; Carbolines; Cell Death; Cell Line; Cell Proliferation; Cell Shape; Collagen; Disease Models, Animal; Epithelial Cells; Ferroptosis; Fibrosis; Humans; Iron; Kidney Tubules; Lipid Peroxidation; Male; Mice, Inbred C57BL; Myofibroblasts; Phospholipid Hydroperoxide Glutathione Peroxidase; Quinoxalines; Spiro Compounds; Ureteral Obstruction | 2021 |
Inhibiting ACSL1-Related Ferroptosis Restrains Murine Coronavirus Infection.
Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection. Topics: Animals; Coenzyme A Ligases; Coronavirus Infections; Cytokines; Disease Models, Animal; Ferroptosis; Genes, Viral; Lung Injury; Macrophages; Mice; Mice, Inbred C57BL; Murine hepatitis virus; Quinoxalines; RAW 264.7 Cells; Spiro Compounds; Toll-Like Receptor 4; Virus Replication | 2021 |
Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway.
Ferroptosis is a more recently recognized form of cell death that relies on iron-mediated oxidative damage. Here, we evaluate the impact of high-iron diets or depletion of Gpx4, an antioxidant enzyme reported as an important ferroptosis suppressor, in the pancreas of mice with cerulean- or L-arginine-induced pancreatitis, and in an oncogenic Kras murine model of spontaneous pancreatic ductal adenocarcinoma (PDAC). We find that either high-iron diets or Gpx4 depletion promotes 8-OHG release and thus activates the TMEM173/STING-dependent DNA sensor pathway, which results in macrophage infiltration and activation during Kras-driven PDAC in mice. Consequently, the administration of liproxstatin-1 (a ferroptosis inhibitor), clophosome-mediated macrophage depletion, or pharmacological and genetic inhibition of the 8-OHG-TMEM173 pathway suppresses Kras-driven pancreatic tumorigenesis in mice. GPX4 is also a prognostic marker in patients with PDAC. These findings provide pathological and mechanistic insights into ferroptotic damage in PDAC tumorigenesis in mice. Topics: Animals; Biomarkers, Tumor; Carcinogenesis; Carcinoma, Pancreatic Ductal; Cell Death; Cell Transformation, Neoplastic; Diet; Disease Models, Animal; DNA; Female; Ferroptosis; Humans; Iron; Macrophages; Male; Membrane Proteins; Mice; Mice, Knockout; Pancreas; Pancreatitis; Phospholipid Hydroperoxide Glutathione Peroxidase; Proto-Oncogene Proteins p21(ras); Quinoxalines; Spiro Compounds; Tumor Microenvironment | 2020 |