lipoteichoic-acid has been researched along with Respiratory-Distress-Syndrome* in 3 studies
3 other study(ies) available for lipoteichoic-acid and Respiratory-Distress-Syndrome
Article | Year |
---|---|
N-Ethylmaleimide Sensitive Factor (NSF) Inhibition Prevents Vascular Instability following Gram-Positive Pulmonary Challenge.
The Acute Respiratory Distress Syndrome (ARDS), remains a significant source of morbidity and mortality in critically ill patients. Pneumonia and sepsis are leading causes of ARDS, the pathophysiology of which includes increased pulmonary microvascular permeability and hemodynamic instability resulting in organ dysfunction. We hypothesized that N-ethylmaleimide sensitive factor (NSF) regulates exocytosis of inflammatory mediators, such as Angiopoietin-2 (Ang-2), and cytoskeletal stability by modulating myosin light chain (MLC) phosphorylation. Therefore, we challenged pulmonary cells, in vivo and in vitro, with Gram Positive bacterial cell wall components, lipoteichoic acid (LTA), and peptidoglycan (PGN) and examined the effects of NSF inhibition.. Mice were pre-treated with an inhibitor of NSF, TAT-NSF700 (to prevent Ang-2 release). After 30min, LTA and PGN (or saline alone) were instilled intratracheally. Pulse oximetry was assessed in awake mice prior to, and 6 hour post instillation. Post mortem, tissues were collected for studies of inflammation and Ang-2. In vitro, pulmonary endothelial cells were assessed for their responses to LTA and PGN.. Pulmonary challenge induced signs of airspace and systemic inflammation such as changes in neutrophil counts and protein concentration in bronchoalveolar lavage fluid and tissue Ang-2 concentration, and decreased physiological parameters including oxygen saturation and pulse distention. TAT-NSF700 pre-treatment reduced LTA-PGN induced changes in lung tissue Ang-2, oxygen saturation and pulse distention. In vitro, LTA-PGN induced a rapid (<2 min) release of Ang-2, which was significantly attenuated by TAT-NSF700 or anti TLR2 antibody. Furthermore, TAT-NSF700 reduced LTA-PGN-induced MLC phosphorylation at low concentrations of 1-10 nM.. TAT-NSF700 decreased Ang-2 release, improved oxygen saturation and pulse distention following pulmonary challenge by inhibiting MLC phosphorylation, an important component of endothelial cell retraction. The data suggest that inhibition of NSF in pneumonia and sepsis may be beneficial to prevent the pulmonary microvascular and hemodynamic instability associated with ARDS. Topics: Angiopoietin-1; Animals; Bacterial Infections; Blood Vessels; Cell Line; Cell Wall; Cytoskeleton; Disease Models, Animal; Exocytosis; Gram-Positive Bacteria; Humans; Inflammation; Lipopolysaccharides; Lung; Male; Mice; Mice, Inbred BALB C; Microcirculation; N-Ethylmaleimide-Sensitive Proteins; Oxygen; Peptidoglycan; Phosphorylation; Pneumonia; Respiratory Distress Syndrome; Sepsis; Teichoic Acids; Vascular Diseases | 2016 |
Apolipoprotein A-I diminishes acute lung injury and sepsis in mice induced by lipoteichoic acid.
Lipoteichoic acid (LTA), as a primary immunostimulus, triggers the systematic inflammatory responses. Our hypothesis is that ApoA-I can neutralize LTA toxicity, like its effect on LPS. BALB/c mice were challenged with LTA, followed by human ApoA-I administration. We found that ApoA-I could attenuate LTA-induced acute lung injury and inflammation and significantly inhibit LTA-induced IL-1beta and TNF-alpha accumulation in the serum (P<0.01 and P<0.05, respectively), as well as in bronchoalveolar lavage (BAL) fluid (P<0.01 and P<0.05, respectively). Moreover, ApoA-I could significantly reduce the L-929 cell mortality caused by LTA-activated macrophages in a dose-dependent fashion. Furthermore, ApoA-I treatment could diminish LTA-mediated NFkappaB nuclear translocation in macrophages. An in vitro binding assay indicated that ApoA-I can bind LTA. These results clearly indicated that ApoA-I can effectively protect against LTA-induced sepsis and acute lung damage. The mechanism might be related to the binding and neutralization of LTA. Topics: Animals; Apolipoprotein A-I; Cell Line; Humans; Lipopolysaccharides; Male; Mice; Mice, Inbred BALB C; Respiratory Distress Syndrome; Sepsis; Teichoic Acids | 2008 |
Modulation of chemokine production in lung microvascular endothelial cells by dopamine is mediated via an oxidative mechanism.
Serum concentrations of catecholamines are high in patients with sepsis or acute respiratory distress syndrome (ARDS). Because chemokines mediate the recruitment of neutrophils into inflammatory sites, we addressed the question of whether dopamine (DA) is able to influence chemokine production in endothelial cells under basal and proinflammatory conditions. To this end, lung microvascular endothelial cells (LMVEC) were stimulated or not for 24 h with the bacterial toxins lipopolysaccharide (LPS) (1 microg/ml) or lipoteichonic acid (LTA) (10 microg/ml) in the presence or absence of various concentrations of DA (1-100 microg/ml). Whereas under basal and stimulatory conditions, the addition of DA to endothelial cells dose-dependently increased IL-8 production, the production of ENA-78 and Gro-alpha was significantly inhibited (P < 0.01). This effect could still be demonstrated when the cells were stimulated for up to 3 h with LPS before DA administration. Similar findings were detected for the mRNA expression of these chemokines. The influence of DA on chemokine production was not receptor mediated and could be prevented by antioxidants or radical scavengers. Moreover, addition of H(2)O(2) to endothelial cells gave results similar to those observed with DA stimulation, suggesting a pivotal role for reactive oxygen species in DA-mediated modulation of chemokine production in endothelial cells. Our data thus demonstrate that DA administration results in the induction of oxidative stress, with profound effects on endothelial chemokine production. Topics: Cardiotonic Agents; Cell Polarity; Chemokine CXCL1; Chemokine CXCL5; Chemokines; Chemokines, CXC; Chemotactic Factors; Dopamine; Endothelium, Vascular; Gene Expression; Growth Substances; Humans; Intercellular Signaling Peptides and Proteins; Interleukin-8; Lipopolysaccharides; Lung; Microcirculation; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; Respiratory Distress Syndrome; Teichoic Acids | 2001 |