lipoteichoic-acid and Hemorrhagic-Disorders

lipoteichoic-acid has been researched along with Hemorrhagic-Disorders* in 1 studies

Other Studies

1 other study(ies) available for lipoteichoic-acid and Hemorrhagic-Disorders

ArticleYear
Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets.
    Thrombosis and haemostasis, 2000, Volume: 83, Issue:5

    In this study, gram-positive Staphylococcus aureus lipoteichoic acid (LTA) dose-dependently (0.1-1.0 microg/ml) and time-dependently (10-60 min) inhibited platelet aggregation in human platelets stimulated by agonists. LTA also dose-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by collagen. LTA (0.5 and 1.0 microg/ml) also significantly inhibited thromboxane A2 formation stimulated by collagen in human platelets. Moreover, LTA (0.1-1.0 microg/ml) dose-dependently decreased the fluorescence of platelet membranes tagged with diphenylhexatrience. Rapid phosphorylation of a platelet protein of Mr. 47,000 (P47), a marker of protein kinase C activation, was triggered by PDBu (30 nM). This phosphorylation was markedly inhibited by LTA (0.5 and 1.0 microg/ml) within a 10-min incubation period. These results indicate that the antiplatelet activity of LTA may be involved in the following pathways: LTA's effects may initially be due to induction of conformational changes in the platelet membrane, leading to a change in the activity of phospholipase C, and subsequent inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of both intracellular Ca+2 mobilization and phosphorylation of P47 protein. Therefore, LTA-mediated alteration of platelet function may contribute to bleeding diathesis in gram-positive septicemic and endotoxemic patients.

    Topics: Calcium Signaling; Cell Membrane; Collagen; Cytosol; Dose-Response Relationship, Drug; Endotoxemia; Enzyme Activation; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Hemorrhagic Disorders; Humans; L-Lactate Dehydrogenase; Lipopolysaccharides; Membrane Fluidity; Membrane Lipids; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peptides; Phorbol 12,13-Dibutyrate; Phosphatidylinositols; Phosphorylation; Platelet Aggregation; Platelet Aggregation Inhibitors; Platelet Glycoprotein GPIIb-IIIa Complex; Protein Kinase C; Protein Processing, Post-Translational; Sepsis; Shock, Septic; Staphylococcus aureus; Teichoic Acids; Thromboxane A2; Thromboxane B2

2000