lipoteichoic-acid and Gram-Negative-Bacterial-Infections

lipoteichoic-acid has been researched along with Gram-Negative-Bacterial-Infections* in 7 studies

Other Studies

7 other study(ies) available for lipoteichoic-acid and Gram-Negative-Bacterial-Infections

ArticleYear
ELAVL1a is an immunocompetent protein that protects zebrafish embryos from bacterial infection.
    Communications biology, 2021, 02-26, Volume: 4, Issue:1

    Previous studies have shown that ELAVL1 plays multiple roles, but its overall biological function remains ill-defined. Here we clearly demonstrated that zebrafish ELAVL1a was a lipoteichoic acid (LTA)- and LPS-binding protein abundantly stored in the eggs/embryos of zebrafish. ELAVL1a acted not only as a pattern recognition receptor, capable of identifying LTA and LPS, as well as bacteria, but also as an effector molecule, capable of inhibiting the growth of Gram-positive and -negative bacteria. Furthermore, we reveal that the C-terminal 62 residues of ELAVL1a positioned at 181-242 were indispensable for ELAVL1a antibacterial activity. Additionally, site-directed mutagenesis revealed that the hydrophobic residues Val192/Ile193, as well as the positively charged residues Arg203/Arg204, were the functional determinants contributing to the antimicrobial activity of rELAVL1a. Importantly, microinjection of rELAVL1a into embryos markedly promoted their resistance against pathogenic Aeromonas hydrophila challenge, and this pathogen-resistant activity was considerably reduced by co-injection of anti-ELAVL1a antibody or by knockdown with morpholino for elavl1a. Collectively, our results indicate that ELAVL1a is a maternal immune factor that can protect zebrafish embryos from bacterial infection. This work also provides another angle for understanding the biological roles of ELAVL1a.

    Topics: Animals; ELAV Proteins; Gene Expression Regulation, Developmental; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Lipid A; Lipopolysaccharides; Mutation; Phylogeny; Protein Binding; Teichoic Acids; Zebrafish; Zebrafish Proteins

2021
Molecular characterization and functional analysis of IL-18 in snakehead (Channa argus) during Aeromonas schubertii and Nocardia seriolae infections.
    Molecular immunology, 2021, Volume: 137

    As a proinflammatory cytokine of the interleukin-1 (IL-1) family, IL-18 plays important roles in host protection against bacterial, viral, and fungal infection. We cloned the open reading frame of snakehead (Channa argus) IL-18 (shIL-18) and found that it contained 609 base pairs and encoded 202 amino acid residues. The shIL-18 included a conserved IL-1-like family signature and two potential IL-1β-converting enzyme cutting sites; one was conserved in all analyzed IL-18s, but the other was unique to shIL-18. Unlike other IL-18s, shIL-18 also contained a predicted signal peptide. In this study, shIL-18 was constitutively expressed in all tested tissues, and its expression was induced by Aeromonas schubertii and Nocardia seriolae in the head kidney and spleen in vivo and by lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid in head kidney leukocytes in vitro. Moreover, recombinant shIL-18 upregulated the expression of interferon-γ, IL-1β, and tumor necrosis factor-α1 and -α2 and promoted the proliferation of leukocytes. Taken together, these results showed that IL-18 played crucial roles in host defense against bacterial infection in fish, as it does in mammals.

    Topics: Aeromonas; Animals; Cloning, Molecular; Fish Diseases; Fish Proteins; Fishes; Gram-Negative Bacterial Infections; Head Kidney; Interleukin-18; Lipopolysaccharides; Nocardia; Nocardia Infections; Spleen; Teichoic Acids

2021
Two types of TNF-α and their receptors in snakehead (Channa argus): Functions in antibacterial innate immunity.
    Fish & shellfish immunology, 2020, Volume: 104

    Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.

    Topics: Aeromonas; Animals; Fish Diseases; Fish Proteins; Fishes; Gram-Negative Bacterial Infections; Head Kidney; Immunity, Innate; Leukocytes; Lipopolysaccharides; Nocardia; Nocardia Infections; Poly I-C; Receptors, Tumor Necrosis Factor; Spleen; Teichoic Acids; Tumor Necrosis Factor-alpha

2020
Immune response of non-pathogenic gram(+) and gram(-) bacteria in inductive sites of the intestinal mucosa study of the pathway of signaling involved.
    Immunobiology, 2010, Volume: 215, Issue:1

    The gut associated lymphoid tissue (GALT) is anatomical and functionally divided in inductive and effectors sites. In previous works we demonstrated that non-pathogenic bacteria with probiotic characteristics can improve the gut mucosal immune system, with an increase in the number of IgA and cytokines producing cells in the effector site of the intestine. In the present work we studied the effect of non-pathogenic Gram(+), Gram(-) bacteria and a Gram(+) probiotic strain on the inductor site (PP) after the oral administration to BALB/c mice. We also studied some signals induced by the assayed strain in the effectors site, such as the enzyme calcineurin and TLR-9 as a way to understand the mechanisms induced in such bacterial stimulation. The implicance of the lipoteichoic acid (LTA) in the immunostimulation was analyzed. All strains increased the number of IFN-gamma and TNF-alpha(+) cells, but not of IL-10(+) cells in the total population of PP. The release of IFN-gamma and TNF-alpha was only induced by LPS stimulation. All assayed strains increased the number of calcineurin(+) cells, while only Gram(+) strains increased the number of TLR-9(+) cells. The immunostimulatory properties of the purified LTA from Gram(+) strains was evaluated on a monocyte-macrophage U937 cell line. These cells showed capacity to release TNF-alpha and IL-10 in response to all LTA assayed in a dose-dependent way. Gram(+) strains induced signals through the calcineurin enzyme able to activate the transcriptional factor NFAT and through TLR-9. The LTA molecule from Gram(+) strains would not be the only structure involved in the immunostimulatory properties observed, specially for the probiotic strain.

    Topics: Animals; Antigen-Presenting Cells; Calcineurin; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Immunity, Mucosal; Immunization; Immunoglobulin A; Interferon-gamma; Interleukin-10; Intestinal Mucosa; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Probiotics; Signal Transduction; Teichoic Acids; Toll-Like Receptor 9; Tumor Necrosis Factor-alpha; U937 Cells

2010
Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages.
    Thorax, 2008, Volume: 63, Issue:6

    Rhinovirus infection is responsible for considerable morbidity and mortality as the major cause of exacerbations of asthma, and is also known to induce exacerbations of cystic fibrosis and chronic obstructive pulmonary disease. Exacerbations of these diseases are also frequently associated with bacterial and atypical bacterial infection. Alveolar macrophages are the major immune cells in the airways and are important in defence against bacterial infections.. The authors investigated whether rhinovirus modifies cytokine release, the pattern recognition receptor expression and phagocytosis by human alveolar macrophages in response to bacterial products.. Viable rhinovirus was detected in macrophages up to 3 days after exposure and viral RNA expression persisted for 10 days. Infectious but not UV inactivated rhinovirus increased tumour necrosis factor alpha (TNFalpha) and interleukin (IL)8 release by macrophages. In contrast, infectious rhinovirus impaired lipopolysaccharide and lipoteichoic acid induced TNFalpha and IL8 secretion by macrophages. Rhinovirus induced impairment of macrophage antibacterial immune responses did not involve IL10, prostaglandin E(2) or downregulation of Toll-like receptor 2. Furthermore, the macrophage phagocytic response to labelled bacterial particles, but not to latex beads, was impaired.. The authors have identified impairment of cytokine responses to bacterial lipopolysaccharide and lipoteichoic acid by alveolar macrophages in response to infectious rhinovirus. Virus induced impairment of antibacterial host defence has important implications in the pathogenesis of exacerbations of respiratory diseases.

    Topics: Down-Regulation; Enzyme-Linked Immunosorbent Assay; Female; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Immunity, Cellular; Interleukin-8; Lipopolysaccharides; Macrophages, Alveolar; Male; Middle Aged; Phagocytosis; Picornaviridae Infections; Rhinovirus; Teichoic Acids; Tumor Necrosis Factor-alpha

2008
The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens.
    Nature immunology, 2004, Volume: 5, Issue:1

    Microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. However, ECM components can also serve as an integral part of the innate immunity. Mice lacking expression of mindin (spondin 2), a highly conserved ECM protein, have an impaired ability to clear bacterial infection, and mindin-deficient macrophages show defective responses to a broad spectrum of microbial stimuli. Moreover, mindin binds directly to bacteria and their components and functions as an opsonin for macrophage phagocytosis of bacteria. Thus, mindin is essential in the initiation of the innate immune response and represents a unique pattern-recognition molecule in the ECM for microbial pathogens.

    Topics: Amino Acid Sequence; Animals; Cytokines; Extracellular Matrix; Extracellular Matrix Proteins; Female; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Lipopolysaccharides; Macrophages, Peritoneal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Molecular Sequence Data; Teichoic Acids

2004
Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets.
    Thrombosis and haemostasis, 2000, Volume: 83, Issue:5

    In this study, gram-positive Staphylococcus aureus lipoteichoic acid (LTA) dose-dependently (0.1-1.0 microg/ml) and time-dependently (10-60 min) inhibited platelet aggregation in human platelets stimulated by agonists. LTA also dose-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by collagen. LTA (0.5 and 1.0 microg/ml) also significantly inhibited thromboxane A2 formation stimulated by collagen in human platelets. Moreover, LTA (0.1-1.0 microg/ml) dose-dependently decreased the fluorescence of platelet membranes tagged with diphenylhexatrience. Rapid phosphorylation of a platelet protein of Mr. 47,000 (P47), a marker of protein kinase C activation, was triggered by PDBu (30 nM). This phosphorylation was markedly inhibited by LTA (0.5 and 1.0 microg/ml) within a 10-min incubation period. These results indicate that the antiplatelet activity of LTA may be involved in the following pathways: LTA's effects may initially be due to induction of conformational changes in the platelet membrane, leading to a change in the activity of phospholipase C, and subsequent inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of both intracellular Ca+2 mobilization and phosphorylation of P47 protein. Therefore, LTA-mediated alteration of platelet function may contribute to bleeding diathesis in gram-positive septicemic and endotoxemic patients.

    Topics: Calcium Signaling; Cell Membrane; Collagen; Cytosol; Dose-Response Relationship, Drug; Endotoxemia; Enzyme Activation; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Hemorrhagic Disorders; Humans; L-Lactate Dehydrogenase; Lipopolysaccharides; Membrane Fluidity; Membrane Lipids; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peptides; Phorbol 12,13-Dibutyrate; Phosphatidylinositols; Phosphorylation; Platelet Aggregation; Platelet Aggregation Inhibitors; Platelet Glycoprotein GPIIb-IIIa Complex; Protein Kinase C; Protein Processing, Post-Translational; Sepsis; Shock, Septic; Staphylococcus aureus; Teichoic Acids; Thromboxane A2; Thromboxane B2

2000