lipid-a and Seizures

lipid-a has been researched along with Seizures* in 2 studies

Other Studies

2 other study(ies) available for lipid-a and Seizures

ArticleYear
Preconditioning with toll-like receptor agonists attenuates seizure activity and neuronal hyperexcitability in the pilocarpine rat model of epilepsy.
    Neuroscience, 2019, 06-01, Volume: 408

    Neuroinflammation plays an important role in epileptic disorders. Toll-like receptors (TLRs) are the key signal transduction tools by which neuroinflammation may promote epileptogenesis. Depending on the stimulus nature, TLRs may engage a distinct signaling pathway. We examined the impact of early minor activation of TLR4 and TLR2 on the severity of seizure in the pilocarpine rat model of temporal lobe epilepsy (TLE). One μg of Lipopolysaccharides (LPS), Monophosphoryl lipid A (MPL), Pam3Cysor or vehicles were microinjected into the right lateral ventricle of the male Wistar rats. 24 h later, seizures were induced by intraperitoneal injection of pilocarpine, and seizure-related behaviors were monitored. 24 h after seizure induction, the hippocampal level of pro/anti-inflammatory mediators and electrophysiological properties of the dentate gyrus (DG) granular cells were investigated by western blot and whole cell patch clamp techniques, respectively. Pretreatment with TLR ligands resulted in decreased seizure severity, lower hippocampal pro-inflammatory (IL-1β and IL-6) cytokines and higher anti-inflammatory (IL-10 and TGF- β) mediators in the pilocarpine-treated rats. Pilocarpine induced profound hyperexcitability in the DG granule cells accompanied by potentiated excitatory postsynaptic currents (EPSCs) and dampened inhibitory postsynaptic currents (IPSCs), in contrast to the control group. However, pretreatment with TLR ligands preserved almost normal excitability and synaptic transmission against the pilocarpine. In conclusion, early activation of TLR4 and TLR2, probably through preserving normal hippocampal cytokine profile and neuronal function attenuates seizure severity in the rat model of TLE.

    Topics: Animals; Epilepsy; Excitatory Postsynaptic Potentials; Lipid A; Lipopolysaccharides; Male; Neurons; Patch-Clamp Techniques; Pilocarpine; Rats; Rats, Wistar; Seizures; Toll-Like Receptors

2019
Monophosphoryl Lipid A and Pam3Cys Prevent the Increase in Seizure Susceptibility and Epileptogenesis in Rats Undergoing Traumatic Brain Injury.
    Neurochemical research, 2018, Volume: 43, Issue:10

    Five percent of all epilepsy cases are attributed to traumatic brain injury (TBI), which are known as post-traumatic epilepsy (PTE). Finding preventive strategies for PTE is valuable. Remarkable feature of TBI is activation of microglia and subsequent neuroinflammation, which provokes epileptogenesis. The toll-like receptor agonists monophosphoryl lipid A (MPL) and tri-palmitoyl-S-glyceryl-cysteine (Pam3Cys) are safe, well-tolerated and effective adjuvants existing in prophylactic human vaccines. We examined the impact of early injection of MPL and Pam3Cys to rats, on the rate of kindled seizures acquisition following TBI. Rats received a single dose (1 µg/rat) of MPL or Pam3Cys through intracerebroventricular injection. 5 days later, trauma was exerted to temporo-parietal cortex of rats by controlled cortical impact device. After 24 h, traumatic rats underwent amygdala kindling. Brain level of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α) was also measured in traumatic rats by immunoblotting. Compared to non-traumatic (sham-operated) rats, traumatic rats showed three times lower seizure threshold (133 ± 5 µA vs. 416.3 ± 16 µA, p < 0.001); about three times less number of stimuli to become kindled (5 ± 1 vs. 14 ± 2, p < 0.01); longer duration of kindled seizure parameters including entire seizure behavior, generalized seizures, and afterdischarges (p < 0.001); and a two times increase in the TNF-α level. MPL and Pam3Cys did not change kindling rate and the seizure parameters in sham-operated rats. The MPL- and Pam3Cys-pretreated traumatic rats displayed seizure threshold, speed of kindling, and duration of kindled seizure parameters, similar to the non-traumatic rats. Pretreatment by MPL and Pam3Cys prevented the increase in TNF-α level by trauma. Given that MPL and Pam3Cys currently have clinical use as well-tolerated vaccines with reliable safety, they have the potential to be used in prevention of PTE.

    Topics: Amygdala; Animals; Brain; Brain Injuries, Traumatic; Epilepsy; Epilepsy, Post-Traumatic; Kindling, Neurologic; Lipid A; Lipoproteins; Male; Rats, Wistar; Seizures

2018