lipid-a has been researched along with Gram-Negative-Bacterial-Infections* in 47 studies
19 review(s) available for lipid-a and Gram-Negative-Bacterial-Infections
Article | Year |
---|---|
Unprecedented community containment measures were taken following the recent outbreak of COVID-19 in Italy. The aim of the study was to explore the self-reported future compliance of citizens with such measures and its relationship with potentially impactful psychological variables.. An online survey was completed by 931 people (18-76 years) distributed across the Italian territory. In addition to demographics, five dimensions were measured: self-reported compliance with containment measures over time (today, at 7, 14, 30, 60, 90, and 180 days from now) at three hypothetical risk levels (10, 50, 90% of likelihood of contracting the COVID-19), perceived risk, generalized anxiety, intolerance of uncertainty, and relevance of several psychological needs whose satisfaction is currently precluded.. The duration of containment measures plays a crucial role in tackling the spread of the disease as people will be less compliant over time. Psychological needs of citizens impacting on the compliance should be taken into account when planning an easing of the lockdown, along with interventions for protecting vulnerable groups from mental distress.. La apendicitis aguda (AA) es la urgencia quirúrgica abdominal más frecuente. No encontramos estudios específicos que evalúen el impacto de la pandemia causada por el coronavirus 2 (SARS-Cov-2) sobre la AA y su tratamiento quirúrgico. Analizamos la influencia de esta nueva patología sobre la AA.. Estudio observacional retrospectivo en pacientes intervenidos por AA desde enero hasta abril de 2020. Fueron clasificados según el momento de la apendicectomía, antes de la declaración del estado de alarma (Pre-COVID19) y después de la declaración del estado de alarma (Post-COVID19) en España. Se evaluaron variables demográficas, duración de la sintomatología, tipo de apendicitis, tiempo quirúrgico, estancia hospitalaria y complicaciones postoperatorias.. La pandemia por SARS-Cov-2 influye en el momento de diagnóstico de la apendicitis, así como en su grado de evolución y estancia hospitalaria. La peritonitis fue lo más frecuentemente observado. Una sospecha y orientación clínica más temprana, es necesaria para evitar un manejo inadecuado de este trastorno quirúrgico común.. The primary outcome is improvement in PaO. Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).. None.. The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.. La surveillance de l’intervalle QT a suscité beaucoup d’intérêt durant la pandémie de la COVID-19 en raison de l’utilisation de médicaments prolongeant l’intervalle QT et les préoccupations quant à la transmission virale par les électrocardiogrammes (ECG) en série. Nous avons posé l’hypothèse que la surveillance en continu de l’intervalle QT par télémétrie était associée à une meilleure détection des épisodes de prolongation de l’intervalle QT.. Nous avons introduit la télémétrie cardiaque en continu (TCC) à l’aide d’un algorithme de surveillance automatisée de l’intervalle QT dans nos unités de COVID-19. Les mesures automatisées quotidiennes de l’intervalle QT corrigé (auto-QTc) en fonction de la fréquence cardiaque maximale ont été enregistrées. Nous avons comparé la proportion des épisodes de prolongation marquée de l’intervalle QTc (QTc long), définie par un intervalle QTc ≥ 500 ms, chez les patients montrant une suspicion de COVID-19 ou ayant la COVID-19 qui avaient été admis avant et après la mise en place de la TCC (groupe témoin. La surveillance en continu de l’intervalle QT est supérieure à la norme de soins dans la détection des épisodes de QTc long et exige peu d’ECG. La réponse clinique aux épisodes de QTc long est sous-optimale.. Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.. Though the majority of HIV-infected adults who were on HAART had shown viral suppression, the rate of suppression was sub-optimal according to the UNAIDS 90-90-90 target to help end the AIDS pandemic by 2020. Nonetheless, the rate of immunological recovery in the study cohort was low. Hence, early initiation of HAART should be strengthened to achieve good virological suppression and immunological recovery.. Dust in Egyptian laying hen houses contains high concentrations of microorganisms and endotoxins, which might impair the health of birds and farmers when inhaled. Furthermore, laying hens in Egypt seem to be a reservoir for ESBL-producing Enterobacteriaceae. Thus, farmers are at risk of exposure to ESBL-producing bacteria, and colonized hens might transmit these bacteria into the food chain.. The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.. Most comparisons for different outcomes are based on very few studies, mostly low-powered, with an overall low CoE. Thus, the available evidence is considered insufficient to either support or refute CH effectiveness or to recommend one ICM over another. Therefore, further well-designed, larger RCTs are required.. PROSPERO database Identifier: CRD42016041953.. Untouched root canal at cross-section perimeter, the Hero 642 system showed 41.44% ± 5.62% and Reciproc R40 58.67% ± 12.39% without contact with instruments. Regarding the untouched area, Hero 642 system showed 22.78% ± 6.42% and Reciproc R40 34.35% ± 8.52%. Neither instrument achieved complete cross-sectional root canal debridement. Hero 642 system rotary taper 0.02 instruments achieved significant greater wall contact perimeter and area compared to reciprocate the Reciproc R40 taper 0.06 instrument.. Hero 642 achieved higher wall contact perimeter and area but, regardless of instrument size and taper, vital pulp during. The functional properties of the main mechanisms involved in the control of muscle Ca. This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (. Attenuated vascular reactivity during pregnancy suggests that the systemic vasodilatory state partially depletes nitric oxide bioavailability. Preliminary data support the potential for MRI to identify vascular dysfunction in vivo that underlies PE. Level of Evidence 2 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:447-455.. La evaluación de riesgo es importante para predecir los resultados postoperatorios en pacientes con cáncer gastroesofágico. Este estudio de cohortes tuvo como objetivo evaluar los cambios en la composición corporal durante la quimioterapia neoadyuvante e investigar su asociación con complicaciones postoperatorias. MÉTODOS: Los pacientes consecutivos con cáncer gastroesofágico sometidos a quimioterapia neoadyuvante y cirugía con intención curativa entre 2016 y 2019, identificados a partir de una base de datos específica, se incluyeron en el estudio. Se utilizaron las imágenes de tomografía computarizada, antes y después de la quimioterapia neoadyuvante, para evaluar el índice de masa muscular esquelética, la sarcopenia y el índice de grasa visceral y subcutánea.. In this in vitro premature infant lung model, HF oscillation of BCPAP was associated with improved CO. Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.. Inflammatory markers are highly related to signs of systemic hypoperfusion in CS. Moreover, high PCT and IL-6 levels are associated with poor prognosis.. These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy. Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; Acyclic Monoterpenes; Adenine Nucleotides; Adhesins, Escherichia coli; Adipocytes; Adipocytes, Brown; Adipogenesis; Administration, Inhalation; Administration, Oral; Adrenal Cortex Hormones; Adsorption; Adult; Aeromonas hydrophila; Africa; Aged; Aged, 80 and over; Agrobacterium tumefaciens; Air; Air Pollutants; Air Pollution; Air Pollution, Indoor; Algorithms; Alkaloids; Alkynes; Allosteric Regulation; Amines; Amino Acid Sequence; Amino Acids; Amino Acids, Branched-Chain; Aminoisobutyric Acids; Aminopyridines; Amyotrophic Lateral Sclerosis; Anaerobic Threshold; Angiography; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animal Distribution; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Ankle Joint; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Inflammatory Agents; Antibodies, Bacterial; Antifungal Agents; Antimalarials; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Antiretroviral Therapy, Highly Active; Antiviral Agents; Aotidae; Apelin; Apoptosis; Arabidopsis Proteins; Argentina; Arginine; Artemisinins; Arthritis, Experimental; Arthritis, Rheumatoid; Arthroscopy; Aspergillus; Aspergillus niger; Asteraceae; Asthma; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; Auditory Cortex; Autoantibodies; Autophagy; Bacteria; Bacterial Infections; Bacterial Proteins; Bacterial Typing Techniques; Base Composition; Base Sequence; Basketball; Beclin-1; Benzhydryl Compounds; Benzimidazoles; Benzo(a)pyrene; Benzofurans; Benzoxazines; Bereavement; beta Catenin; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Betacoronavirus; Betaine; Binding Sites; Biofilms; Biological Assay; Biological Availability; Biological Evolution; Biomarkers; Biomechanical Phenomena; Biopolymers; Biopsy; Bismuth; Blood Glucose; Blood Platelets; Blood Pressure; Body Composition; Body Weight; Bone Marrow; Bone Marrow Cells; Bone Regeneration; Boron; Botrytis; Brain Ischemia; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Brazil; Breast Neoplasms; Breath Tests; Bronchoalveolar Lavage Fluid; Burkholderia; C-Reactive Protein; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Calcification, Physiologic; Calcium; Calcium Signaling; Calorimetry, Differential Scanning; Cameroon; Camptothecin; Candida; Candida albicans; Capillaries; Carbapenem-Resistant Enterobacteriaceae; Carbapenems; Carbohydrate Conformation; Carbon; Carbon Dioxide; Carbon Isotopes; Carcinoma, Ovarian Epithelial; Cardiac Output; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cardiovascular Diseases; Caregivers; Carps; Case-Control Studies; Catalase; Catalysis; Cats; CD4 Lymphocyte Count; Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Survival; Cells, Cultured; Cellulose; Centrosome; Ceratopogonidae; Chickens; Child; China; Cholera Toxin; Choline; Cholinesterases; Chromatography, High Pressure Liquid; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromatography, Reverse-Phase; Chronic Disease; Cinnamates; Cities; Citrates; Climate Change; Clinical Trials, Phase III as Topic; Coal; Coal Mining; Cohort Studies; Coinfection; Colchicine; Colony Count, Microbial; Colorectal Neoplasms; Coloring Agents; Common Cold; Complement Factor H; Computational Biology; Computer Simulation; Continuous Positive Airway Pressure; Contrast Media; Coordination Complexes; Coronary Artery Bypass; Coronavirus 3C Proteases; Coronavirus Infections; Coronavirus Protease Inhibitors; Corynebacterium glutamicum; Cosmetics; COVID-19; Creatinine; Cross-Sectional Studies; Crotonates; Crystallography, X-Ray; Cues; Culicidae; Culture Media; Curcuma; Cyclopentanes; Cyclopropanes; Cymbopogon; Cystine; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C19 Inhibitors; Cytokines; Databases, Genetic; Death; Dendritic Cells; Density Functional Theory; Depsides; Diabetes Mellitus, Type 2; Diamond; Diarylheptanoids; Dibenzofurans; Dibenzofurans, Polychlorinated; Diclofenac; Diet; Dietary Carbohydrates; Dietary Supplements; Diffusion Magnetic Resonance Imaging; Dioxins; Diphenylamine; Disease Outbreaks; Disease Susceptibility; Disulfides; Dithiothreitol; Dizocilpine Maleate; DNA Methylation; DNA-Binding Proteins; DNA, Bacterial; Dogs; Dose-Response Relationship, Drug; Double-Blind Method; Doublecortin Protein; Drosophila melanogaster; Droughts; Drug Carriers; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Resistance; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Dust; Dynactin Complex; Dysferlin; Echo-Planar Imaging; Echocardiography; Edaravone; Egypt; Elasticity; Electrodes; Electrolytes; Emodin; Emtricitabine; Endometriosis; Endothelium, Vascular; Endotoxins; Energy Metabolism; Energy Transfer; Enterobacteriaceae; Enterococcus faecalis; Enterotoxigenic Escherichia coli; Environmental Monitoring; Enzyme Inhibitors; Epidemiologic Factors; Epigenesis, Genetic; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Vaccines; Esophageal Neoplasms; Esophagectomy; Esophagogastric Junction; Esterases; Esterification; Ethanol; Ethiopia; Ethnicity; Eucalyptus; Evidence-Based Practice; Exercise; Exercise Tolerance; Extracorporeal Membrane Oxygenation; Family; Fatty Acids; Feedback; Female; Ferric Compounds; Fibrin Fibrinogen Degradation Products; Filtration; Fish Diseases; Flavonoids; Flavonols; Fluorodeoxyglucose F18; Follow-Up Studies; Food Microbiology; Food Preservation; Forests; Fossils; Free Radical Scavengers; Freund's Adjuvant; Fruit; Fungi; Gallium; Gender Identity; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Genes, Bacterial; Genes, Plant; Genetic Predisposition to Disease; Genitalia; Genotype; Glomerulonephritis, IGA; Glottis; Glucocorticoids; Glucose; Glucuronides; Glutathione Transferase; Glycogen Synthase Kinase 3 beta; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Grassland; Guinea Pigs; Half-Life; Head Kidney; Heart Atria; Heart Rate; Heart Septum; HEK293 Cells; Hematopoietic Stem Cells; Hemodynamics; Hep G2 Cells; Hepacivirus; Hepatitis C; Hepatitis C, Chronic; Hepatocytes; Hesperidin; High-Frequency Ventilation; High-Temperature Requirement A Serine Peptidase 1; Hippocampus; Hirudins; History, 20th Century; History, 21st Century; HIV Infections; Homeostasis; Hominidae; Housing, Animal; Humans; Hydrocarbons, Brominated; Hydrogen Bonding; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxybutyrates; Hydroxyl Radical; Hypertension; Hypothyroidism; Image Interpretation, Computer-Assisted; Immunoconjugates; Immunogenic Cell Death; Indoles; Infant, Newborn; Infant, Premature; Infarction, Middle Cerebral Artery; Inflammation; Inflammation Mediators; Infrared Rays; Inhibitory Concentration 50; Injections, Intravenous; Interferon-gamma; Interleukin-23; Interleukin-4; Interleukin-6; Intermediate Filaments; Intermittent Claudication; Intestine, Small; Iridoid Glucosides; Iridoids; Iron; Isomerism; Isotope Labeling; Isoxazoles; Itraconazole; Kelch-Like ECH-Associated Protein 1; Ketoprofen; Kidney Failure, Chronic; Kinetics; Klebsiella pneumoniae; Lactams, Macrocyclic; Lactobacillus; Lactulose; Lakes; Lamivudine; Laparoscopy; Laparotomy; Laryngoscopy; Leucine; Limit of Detection; Linear Models; Lipid A; Lipopolysaccharides; Listeria monocytogenes; Liver; Liver Cirrhosis; Logistic Models; Longitudinal Studies; Losartan; Low Back Pain; Lung; Lupinus; Lupus Erythematosus, Systemic; Machine Learning; Macular Degeneration; Madin Darby Canine Kidney Cells; Magnetic Phenomena; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetics; Malaria, Falciparum; Male; Mannans; MAP Kinase Signaling System; Mass Spectrometry; Melatonin; Membrane Glycoproteins; Membrane Proteins; Meniscectomy; Menisci, Tibial; Mephenytoin; Mesenchymal Stem Cells; Metal Nanoparticles; Metal-Organic Frameworks; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, Obese; Mice, Transgenic; Microbial Sensitivity Tests; Microcirculation; MicroRNAs; Microscopy, Video; Microtubules; Microvascular Density; Microwaves; Middle Aged; Minimally Invasive Surgical Procedures; Models, Animal; Models, Biological; Models, Molecular; Models, Theoretical; Molecular Docking Simulation; Molecular Structure; Molecular Weight; Morus; Mouth Floor; Multicenter Studies as Topic; Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Muscle, Skeletal; Myocardial Ischemia; Myocardium; NAD; NADP; Nanocomposites; Nanoparticles; Naphthols; Nasal Lavage Fluid; Nasal Mucosa; Neisseria meningitidis; Neoadjuvant Therapy; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Neoplasms, Experimental; Neural Stem Cells; Neuroblastoma; Neurofilament Proteins; Neurogenesis; Neurons; New York; NF-E2-Related Factor 2; NF-kappa B; Nicotine; Nitriles; Nitrogen; Nitrogen Fixation; North America; Observer Variation; Occupational Exposure; Ochrobactrum; Oils, Volatile; Olea; Oligosaccharides; Omeprazole; Open Field Test; Optimism; Oregon; Oryzias; Osmolar Concentration; Osteoarthritis; Osteoblasts; Osteogenesis; Ovarian Neoplasms; Ovariectomy; Oxadiazoles; Oxidation-Reduction; Oxidative Stress; Oxygen; Ozone; p38 Mitogen-Activated Protein Kinases; Pakistan; Pandemics; Particle Size; Particulate Matter; Patient-Centered Care; Pelargonium; Peptides; Perception; Peripheral Arterial Disease; Peroxides; Pets; Pharmaceutical Preparations; Pharmacogenetics; Phenobarbital; Phenols; Phenotype; Phosphates; Phosphatidylethanolamines; Phosphines; Phospholipids; Phosphorus; Phosphorylation; Photoacoustic Techniques; Photochemotherapy; Photosensitizing Agents; Phylogeny; Phytoestrogens; Pilot Projects; Plant Components, Aerial; Plant Extracts; Plant Immunity; Plant Leaves; Plant Oils; Plants, Medicinal; Plasmodium berghei; Plasmodium falciparum; Platelet Activation; Platelet Function Tests; Pneumonia, Viral; Poaceae; Pogostemon; Poloxamer; Poly I; Poly(ADP-ribose) Polymerase Inhibitors; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Polycyclic Compounds; Polyethylene Glycols; Polylysine; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Population Dynamics; Portasystemic Shunt, Transjugular Intrahepatic; Positron Emission Tomography Computed Tomography; Postoperative Complications; Postprandial Period; Potassium Cyanide; Predictive Value of Tests; Prefrontal Cortex; Pregnancy; Prepulse Inhibition; Prevalence; Procalcitonin; Prodrugs; Prognosis; Progression-Free Survival; Proline; Proof of Concept Study; Prospective Studies; Protein Binding; Protein Conformation; Protein Domains; Protein Folding; Protein Multimerization; Protein Sorting Signals; Protein Structure, Secondary; Proton Pump Inhibitors; Protozoan Proteins; Psychometrics; Pulse Wave Analysis; Pyridines; Pyrrolidines; Quality of Life; Quantum Dots; Quinoxalines; Quorum Sensing; Radiopharmaceuticals; Rain; Random Allocation; Randomized Controlled Trials as Topic; Rats; Rats, Sprague-Dawley; Rats, Wistar; RAW 264.7 Cells; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptor, PAR-1; Receptors, CXCR4; Receptors, Estrogen; Receptors, Glucocorticoid; Receptors, Interleukin-1; Receptors, Interleukin-17; Receptors, Notch; Recombinant Fusion Proteins; Recombinant Proteins; Reducing Agents; Reflex, Startle; Regional Blood Flow; Regression Analysis; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Tract Diseases; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Risk Assessment; Risk Factors; Rituximab; RNA, Messenger; RNA, Ribosomal, 16S; ROC Curve; Rosmarinic Acid; Running; Ruthenium; Rutin; Sarcolemma; Sarcoma; Sarcopenia; Sarcoplasmic Reticulum; SARS-CoV-2; Scavenger Receptors, Class A; Schools; Seasons; Seeds; Sequence Analysis, DNA; Severity of Illness Index; Sex Factors; Shock, Cardiogenic; Short Chain Dehydrogenase-Reductases; Signal Transduction; Silver; Singlet Oxygen; Sinusitis; Skin; Skin Absorption; Small Molecule Libraries; Smoke; Socioeconomic Factors; Soil; Soil Microbiology; Solid Phase Extraction; Solubility; Solvents; Spain; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Speech; Speech Perception; Spindle Poles; Spleen; Sporothrix; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Stomach Neoplasms; Stress, Physiological; Stroke Volume; Structure-Activity Relationship; Substrate Specificity; Sulfonamides; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Rate; T-Lymphocytes, Cytotoxic; Tandem Mass Spectrometry; Temperature; Tenofovir; Terpenes; Tetracycline; Tetrapleura; Textiles; Thermodynamics; Thiobarbituric Acid Reactive Substances; Thrombin; Thyroid Hormones; Thyroid Neoplasms; Tibial Meniscus Injuries; Time Factors; Tissue Distribution; Titanium; Toluidines; Tomography, X-Ray Computed; Tooth; Tramadol; Transcription Factor AP-1; Transcription, Genetic; Transfection; Transgender Persons; Translations; Treatment Outcome; Triglycerides; Ubiquinone; Ubiquitin-Specific Proteases; United Kingdom; United States; Up-Regulation; Vascular Stiffness; Veins; Ventricular Remodeling; Viral Load; Virulence Factors; Virus Replication; Vitis; Voice; Voice Quality; Wastewater; Water; Water Pollutants, Chemical; Water-Electrolyte Balance; Weather; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Young Adult; Zoogloea | 2022 |
Biosynthesis and structure-activity relationships of the lipid a family of glycolipids.
Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IV Topics: Animals; Biosynthetic Pathways; Glycolipids; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Immunity, Innate; Lipid A; Toll-Like Receptors | 2017 |
Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods.
A literature review was undertaken to ascertain the molecular basis for tigecycline and colistin resistance mechanisms and the experimental basis for the detection and delineation of this resistance particularly in carbapenemase-producing Gram-negative bacteria. Pubmed, Google Scholar and Science Direct were searched with the keywords colistin, tigecycline, resistance mechanisms and detection methods. Trans-complementation and comparative MIC studies, mass spectrometry, chromatography, spectrofluorometry, PCR, qRT-PCR and whole genome sequencing (WGS) were commonly used to determine tigecycline and colistin resistance mechanisms, specifically modifications in the structural and regulatory efflux (acrAB, OqxAB, kpgABC adeABC-FGH-IJK, mexAB-XY-oprJM and soxS, rarA robA, ramRAB marRABC, adeLRS, mexRZ and nfxb) and lipid A (pmrHFIJFKLM, lpxA, lpxC lpxD and mgrB, pmrAB, phoPQ,) genes respectively. Mutations in the ribosomal 16S rRNA operon rrnBC, also yielded resistance to tigecycline through target site modifications. The mcr-1 gene conferring resistance to colistin was identified via WGS, trans-complementation and a murine thigh infection model studies. Common detection methods are mainly antibiotic sensitivity testing with broth microdilution while molecular identification tools are mostly PCR and WGS. Spectrofluorometry, MALDI-TOF MS, micro-array and real-time multiplex PCR hold much promise for the future as new detection tools. Topics: Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamases; Colistin; Drug Resistance, Bacterial; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A; Membrane Transport Proteins; Microbial Sensitivity Tests; Minocycline; Mutation; RNA, Bacterial; RNA, Ribosomal, 16S; Tigecycline | 2016 |
Endotoxemia-menace, marker, or mistake?
Endotoxemia is in its scientific ascendancy. Never has blood-borne, Gram-negative bacterial endotoxin (LPS) been invoked in the pathogenesis of so many diseases-not only as a trigger for septic shock, once its most cited role, but also as a contributor to atherosclerosis, obesity, chronic fatigue, metabolic syndrome, and many other conditions. Finding elevated plasma endotoxin levels has been essential supporting evidence for each of these links, yet the assays used to detect and quantitate endotoxin have important limitations. This article describes several assays for endotoxin in plasma, reviews what they do and do not measure, and discusses why LPS heterogeneity, LPS trafficking pathways, and host LPS inactivation mechanisms should be considered when interpreting endotoxin assay results. Topics: Biological Transport; Carboxylic Ester Hydrolases; Endotoxemia; Enzyme-Linked Immunosorbent Assay; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Intestinal Absorption; Limulus Test; Lipid A; Lipopolysaccharides; Lymph; Neutralization Tests; O Antigens; Structure-Activity Relationship | 2016 |
Chemistry of lipid A: at the heart of innate immunity.
In many Gram-negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level. Topics: Animals; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Immunity, Innate; Lipid A; Lymphocyte Antigen 96; Models, Molecular; Toll-Like Receptor 4 | 2015 |
Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis.
Gram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system. Topics: Animals; Bacterial Proteins; Gene Expression Regulation, Bacterial; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Host-Pathogen Interactions; Humans; Lipid A; Signal Transduction; Virulence | 2013 |
Marine compounds with therapeutic potential in gram-negative sepsis.
This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs)). Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents. Topics: Animals; Anti-Bacterial Agents; Aquatic Organisms; Carrageenan; Chitosan; Endotoxemia; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A; Sepsis | 2013 |
Lipid a biosynthesis of multidrug-resistant pathogens - a novel drug target.
The rapid increase of human infections by multidrug-resistant (MDR) Gram-negative pathogens poses a serious health threat and demands the identification of new strategies, molecular targets, and agents for the treatment of Gram-negative bacterial infections. The biosynthesis of lipid A, the membrane-anchoring portion of lipopolysaccharide (LPS), is one promising target for novel antibiotic design because lipid A is essential for LPS assembly in most Gram-negative bacteria. The first three enzymes in the biosynthesis of lipid A, UDP-N-acetylglucosamine acyltransferase (LpxA), UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase (LpxC) and UDP- 3-O-(R-3-hydroxyacyl)glucosamine N-acyltransferase (LpxD), have emerged as an attractive Gram-negative antibacterial molecular target. In this article, we review recent advances in the studies on the structures and the structure-based drug designs of the three enzymes. Topics: Acyltransferases; Amidohydrolases; Animals; Drug Design; Drug Resistance, Multiple; Enzyme Inhibitors; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A | 2013 |
[The structural diversity of lipid A from gram-negative bacteria].
The majority of Gram-negative bacteria are pathogenic to humans and animals. Lipopolysaccharide (LPS) is the most biologically active component of these microorganisms. This compound is also called endotoxin to emphasize its negative impact on a macroorganism. Lipid A, one of the three structural components of the LPS molecule, is responsible for the pathophysiological effects associated with Gram-negative bacteria infections. Although lipid A is considered the conservative component of endotoxin, differences in its structure among species and even strains may occur. These differences concern the type of aminosugars, the degree of substitution of the disaccharide core by fatty acids, phosphate, and/or ethanolamine, and also the type, quantity, and distribution of fatty acids. The lipid A saccharide backbone of the majority of Gram-negative bacteria consists of two glucosamine units in beta (1-->6) glycosidic linkage. Amino groups (at positions 2 and 2') and hydroxy groups (at positions 3 and 3') of glucosamines are commonly substituted by 3-hydroxyfatty acids, most often by 3-hydroxytetradecanoic acid. Other fatty acids (usually saturated, unbranched) are ester-linked to hydroxyacids by their hydroxy group. In lipid A of different microorganisms there is a high diversity of fatty acids, from mirystic (tetradecanoic, 14:0) and lauric (dodecanoic, 12:0) acids and their hydroxylated derivatives to such unique structures as cis-11-octadecenoic acid (Rhodospirillum salinarum 40), 3-hydroxy-5-dodecenoic acid (Phenylobacterium immobile), and iso-2,3-dihydroxytetradecanoic acid (Legionella pneumophila). The saccharide core of some bacterial lipid A may consist of sugars different from glucosamine, e.g., 2,3-diamino-2,3-dideoxy-D-glucose. Other substituents of this part of LPS, besides phosphate groups and ethanolamine, are beta -mannopyranose, 4-aminoarabinose, galacturonic acid, and glycine. Therefore, lipid A, though considered the relatively conservative component of endotoxin, reveals relatively large structural diversity, which influences the variety of LPS biological activity. Topics: Animals; Endotoxins; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A | 2007 |
The molecular mechanism of interaction between sushi peptide and Pseudomonas endotoxin.
Septic shock is caused by Gram-negative bacterial infection. Lipopolysaccharide (LPS) is the bioactive molecule present on the outer membrane of the Gram-negative bacteria. It is generally thought that LPS interacts with sensors on the host cell membrane to activate the intracellular signaling pathway resulting in the overproduction of cytokines such as TNF-alpha. This causes inflammation and ultimately, septic shock. Lipid A is the pharmacophore of the LPS molecule. Thus, developing bio-molecules which are capable of binding LPS at high affinity, especially to the lipid A moiety is an efficient way to neutralize the LPS toxicity. Factor C, a serine protease in the horseshoe crab ameobocytes, is sensitive to trace levels of LPS. We have derived Sushi peptides from the LPS-binding domains of Factor C. Our earlier study showed that the Sushi peptides inhibit LPS-induced septic shock in mice. Here, we demonstrate that the molecular interaction between LPS and Sushi 1 peptide is supported by the hydrophobic interaction between the lipid tail of LPS and Sushi 1 peptide. Furthermore, in the presence of LPS, the peptide transitions from a random structure into an alpha-helical conformation and it disrupts LPS aggregates, hence, neutralizing the LPS toxicity. Topics: Animals; Arthropod Proteins; Binding Sites; Enzyme Precursors; Gram-Negative Bacterial Infections; Humans; Lipid A; Peptides; Protein Binding; Protein Structure, Secondary; Pseudomonas; Pseudomonas Infections; Serine Endopeptidases; Shock, Septic; Structure-Activity Relationship | 2006 |
Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria.
Topics: Acylation; Animals; Biological Evolution; Carboxylic Ester Hydrolases; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Hydrolysis; Immunity, Innate; Immunity, Mucosal; Lipid A; Lipopolysaccharides; Toll-Like Receptor 4 | 2006 |
Fundamentals of endotoxin structure and function.
Topics: Bacterial Outer Membrane Proteins; Carbohydrate Sequence; Endotoxins; Gram-Negative Bacterial Infections; Gram-Positive Bacteria; Humans; Lipid A; Membrane Glycoproteins; Molecular Sequence Data; Receptors, Cell Surface; Structure-Activity Relationship; Toll-Like Receptors | 2005 |
The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis.
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists. Topics: Acyltransferases; Antimicrobial Cationic Peptides; Bacterial Outer Membrane Proteins; Catalysis; Cell Membrane; Drug Resistance, Microbial; Endotoxins; Escherichia coli Proteins; Gram-Negative Aerobic Bacteria; Gram-Negative Bacterial Infections; Lipid A | 2005 |
Antibacterial and anti-inflammatory agents that target endotoxin.
Antibiotic-resistant bacterial infections are a major clinical problem. Lipid A, the active part of lipopolysaccharide endotoxins in Gram-negative bacteria, is an intriguing target for new antibacterial and anti-inflammatory agents. Inhibition of lipid A biosynthesis kills most Gram-negative bacteria, increases bacterial permeability to antibiotics and decreases endotoxin production. Topics: Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents; Carbohydrate Sequence; Gram-Negative Bacterial Infections; Humans; Lipid A; Molecular Sequence Data; Sepsis | 1998 |
Lipid A diversity and the innate host response to bacterial infection.
Lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria, is a potent immunostimulatory molecule which activates the innate host defense system. Over the past few years progress has been made in identifying the molecular mechanisms of host recognition of lipid A (a component of lipopolysaccharide), the identification of the genes required for Escherichia coli lipid A biosynthesis, and the role of lipid A acylation when viable bacteria are presented to host cells. Recent data indicate that bacteria can regulate this molecule in response to different host microenvironments. Host factors that induce lipid A modifications and the resultant changes in host response remain to be determined. Topics: Animals; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A; Mice | 1998 |
Lipopolysaccharide antagonists.
Bacterial lipopolysaccharide (LPS) is a potent and pleiotropic stimulus of immune cells. LPS has important clinical relevance because it has a direct role in the pathogenesis of Gram-negative bacterial infection. The lipid A moiety of LPS is responsible for the toxic effects of LPS. The identification of structural analogs and precursors of lipid A, which are apparently competitive antagonists of the biological actions of LPS, is strong evidence that the actions of LPS are mediated by a specific LPS receptor or family of receptors. Identification and analysis of these LPS receptors with LPS antagonists should help to define the pathways of cellular activation by LPS and lead to the development of novel anti-LPS strategies in the therapy of bacterial diseases. Topics: Antimicrobial Cationic Peptides; Blood Proteins; Cytokines; Endotoxins; Gram-Negative Bacterial Infections; Humans; Lipid A; Lipopolysaccharides; Lymphocyte Activation; Membrane Proteins; Polymyxin B; Receptors, Immunologic | 1992 |
Immunotherapy with antibodies to core lipopolysaccharide: a critical appraisal.
The unknowns persisting in the understanding of the mode of action of anti-core lipopolysaccharide antibodies are discussed, and a study of two anti-lipid A monoclonal antibodies is reviewed. This article also critically analyzes the results of the recent clinical trials with monoclonal antibodies. Topics: Animals; Antibodies, Bacterial; Antibodies, Monoclonal; Disease Models, Animal; Epitopes; Escherichia coli; Gram-Negative Bacterial Infections; Humans; Immunoglobulins, Intravenous; Immunotherapy; Lipid A; Lipopolysaccharides | 1991 |
Lipid A analogs aimed at preventing the detrimental effects of endotoxin.
Evidence has been presented for two potential methods of administering lipid A derivatives for the reduction of endotoxicity: 1. Use of low doses of agonists to induce early-phase tolerance for a sufficiently long period to protect patients at risk of endotoxin shock. 2. Administration of high doses of antagonists to the LPS-induced release of proinflammatory cytokines. The strengths and weaknesses of both approaches can be summarized as follows: Approach 1 appears promising for patients at risk for septicemias, based on iatrogenic induction of neutropenias or genetically caused neutropenic states, e.g., in cancer patients receiving aggressive chemotherapy or irradiation and in patients receiving immunosuppressive therapy (transplantations, myelodysplastic syndromes, and so forth.) Strengths. A long lasting effect can be expected. Broad protection against many types of infectious organisms. Strong potentiation of antibiotic chemotherapy anticipated irrespective of resistance patterns to antibiotics. Weaknesses. Only prophylactic treatment appears possible. Potential for endotoxic side-effects remains. Approach 2, the administration of LPS antagonists, appears most promising in clinical situations when interference with acute endotoxic shock symptoms subsequent to polytrauma is necessary. Strengths. Immediate onset of activity would be expected. Lower risk of side-effects. Weaknesses. Therapy may already be too late. Activity is restricted to endotoxicity, there being no anti-infectious potential. High drug levels might be required for a prolonged period. Synergism with antibiotics is not yet established. Together, these new lipid A derivatives open up new potential therapeutic avenues for the prophylaxis and therapy of septic shock, septicemias, and infections. Clinical studies will soon show whether the exciting pharmacologic effects observed in animals can be translated into humans. Topics: Animals; Chemotherapy, Adjuvant; Endotoxins; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A; Lipopolysaccharides; Structure-Activity Relationship | 1991 |
Therapy of gram-negative sepsis in man with anti-endotoxin antibodies: a review.
Topics: Endotoxins; Gram-Negative Bacterial Infections; Humans; Immunization, Passive; Lipid A; Sepsis | 1991 |
3 trial(s) available for lipid-a and Gram-Negative-Bacterial-Infections
Article | Year |
---|---|
Unprecedented community containment measures were taken following the recent outbreak of COVID-19 in Italy. The aim of the study was to explore the self-reported future compliance of citizens with such measures and its relationship with potentially impactful psychological variables.. An online survey was completed by 931 people (18-76 years) distributed across the Italian territory. In addition to demographics, five dimensions were measured: self-reported compliance with containment measures over time (today, at 7, 14, 30, 60, 90, and 180 days from now) at three hypothetical risk levels (10, 50, 90% of likelihood of contracting the COVID-19), perceived risk, generalized anxiety, intolerance of uncertainty, and relevance of several psychological needs whose satisfaction is currently precluded.. The duration of containment measures plays a crucial role in tackling the spread of the disease as people will be less compliant over time. Psychological needs of citizens impacting on the compliance should be taken into account when planning an easing of the lockdown, along with interventions for protecting vulnerable groups from mental distress.. La apendicitis aguda (AA) es la urgencia quirúrgica abdominal más frecuente. No encontramos estudios específicos que evalúen el impacto de la pandemia causada por el coronavirus 2 (SARS-Cov-2) sobre la AA y su tratamiento quirúrgico. Analizamos la influencia de esta nueva patología sobre la AA.. Estudio observacional retrospectivo en pacientes intervenidos por AA desde enero hasta abril de 2020. Fueron clasificados según el momento de la apendicectomía, antes de la declaración del estado de alarma (Pre-COVID19) y después de la declaración del estado de alarma (Post-COVID19) en España. Se evaluaron variables demográficas, duración de la sintomatología, tipo de apendicitis, tiempo quirúrgico, estancia hospitalaria y complicaciones postoperatorias.. La pandemia por SARS-Cov-2 influye en el momento de diagnóstico de la apendicitis, así como en su grado de evolución y estancia hospitalaria. La peritonitis fue lo más frecuentemente observado. Una sospecha y orientación clínica más temprana, es necesaria para evitar un manejo inadecuado de este trastorno quirúrgico común.. The primary outcome is improvement in PaO. Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).. None.. The gut barrier is crucial in cirrhosis in preventing infection-causing bacteria that normally live in the gut from accessing the liver and other organs via the bloodstream. Herein, we characterised gut inflammation by measuring different markers in stool samples from patients at different stages of cirrhosis and comparing this to healthy people. These markers, when compared with equivalent markers usually measured in blood, were found to be very different in pattern and absolute levels, suggesting that there is significant gut inflammation in cirrhosis related to different immune system pathways to that seen outside of the gut. This provides new insights into gut-specific immune disturbances that predispose to complications of cirrhosis, and emphasises that a better understanding of the gut-liver axis is necessary to develop better targeted therapies.. La surveillance de l’intervalle QT a suscité beaucoup d’intérêt durant la pandémie de la COVID-19 en raison de l’utilisation de médicaments prolongeant l’intervalle QT et les préoccupations quant à la transmission virale par les électrocardiogrammes (ECG) en série. Nous avons posé l’hypothèse que la surveillance en continu de l’intervalle QT par télémétrie était associée à une meilleure détection des épisodes de prolongation de l’intervalle QT.. Nous avons introduit la télémétrie cardiaque en continu (TCC) à l’aide d’un algorithme de surveillance automatisée de l’intervalle QT dans nos unités de COVID-19. Les mesures automatisées quotidiennes de l’intervalle QT corrigé (auto-QTc) en fonction de la fréquence cardiaque maximale ont été enregistrées. Nous avons comparé la proportion des épisodes de prolongation marquée de l’intervalle QTc (QTc long), définie par un intervalle QTc ≥ 500 ms, chez les patients montrant une suspicion de COVID-19 ou ayant la COVID-19 qui avaient été admis avant et après la mise en place de la TCC (groupe témoin. La surveillance en continu de l’intervalle QT est supérieure à la norme de soins dans la détection des épisodes de QTc long et exige peu d’ECG. La réponse clinique aux épisodes de QTc long est sous-optimale.. Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.. Though the majority of HIV-infected adults who were on HAART had shown viral suppression, the rate of suppression was sub-optimal according to the UNAIDS 90-90-90 target to help end the AIDS pandemic by 2020. Nonetheless, the rate of immunological recovery in the study cohort was low. Hence, early initiation of HAART should be strengthened to achieve good virological suppression and immunological recovery.. Dust in Egyptian laying hen houses contains high concentrations of microorganisms and endotoxins, which might impair the health of birds and farmers when inhaled. Furthermore, laying hens in Egypt seem to be a reservoir for ESBL-producing Enterobacteriaceae. Thus, farmers are at risk of exposure to ESBL-producing bacteria, and colonized hens might transmit these bacteria into the food chain.. The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.. Most comparisons for different outcomes are based on very few studies, mostly low-powered, with an overall low CoE. Thus, the available evidence is considered insufficient to either support or refute CH effectiveness or to recommend one ICM over another. Therefore, further well-designed, larger RCTs are required.. PROSPERO database Identifier: CRD42016041953.. Untouched root canal at cross-section perimeter, the Hero 642 system showed 41.44% ± 5.62% and Reciproc R40 58.67% ± 12.39% without contact with instruments. Regarding the untouched area, Hero 642 system showed 22.78% ± 6.42% and Reciproc R40 34.35% ± 8.52%. Neither instrument achieved complete cross-sectional root canal debridement. Hero 642 system rotary taper 0.02 instruments achieved significant greater wall contact perimeter and area compared to reciprocate the Reciproc R40 taper 0.06 instrument.. Hero 642 achieved higher wall contact perimeter and area but, regardless of instrument size and taper, vital pulp during. The functional properties of the main mechanisms involved in the control of muscle Ca. This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (. Attenuated vascular reactivity during pregnancy suggests that the systemic vasodilatory state partially depletes nitric oxide bioavailability. Preliminary data support the potential for MRI to identify vascular dysfunction in vivo that underlies PE. Level of Evidence 2 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:447-455.. La evaluación de riesgo es importante para predecir los resultados postoperatorios en pacientes con cáncer gastroesofágico. Este estudio de cohortes tuvo como objetivo evaluar los cambios en la composición corporal durante la quimioterapia neoadyuvante e investigar su asociación con complicaciones postoperatorias. MÉTODOS: Los pacientes consecutivos con cáncer gastroesofágico sometidos a quimioterapia neoadyuvante y cirugía con intención curativa entre 2016 y 2019, identificados a partir de una base de datos específica, se incluyeron en el estudio. Se utilizaron las imágenes de tomografía computarizada, antes y después de la quimioterapia neoadyuvante, para evaluar el índice de masa muscular esquelética, la sarcopenia y el índice de grasa visceral y subcutánea.. In this in vitro premature infant lung model, HF oscillation of BCPAP was associated with improved CO. Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.. Inflammatory markers are highly related to signs of systemic hypoperfusion in CS. Moreover, high PCT and IL-6 levels are associated with poor prognosis.. These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy. Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; Acyclic Monoterpenes; Adenine Nucleotides; Adhesins, Escherichia coli; Adipocytes; Adipocytes, Brown; Adipogenesis; Administration, Inhalation; Administration, Oral; Adrenal Cortex Hormones; Adsorption; Adult; Aeromonas hydrophila; Africa; Aged; Aged, 80 and over; Agrobacterium tumefaciens; Air; Air Pollutants; Air Pollution; Air Pollution, Indoor; Algorithms; Alkaloids; Alkynes; Allosteric Regulation; Amines; Amino Acid Sequence; Amino Acids; Amino Acids, Branched-Chain; Aminoisobutyric Acids; Aminopyridines; Amyotrophic Lateral Sclerosis; Anaerobic Threshold; Angiography; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animal Distribution; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Ankle Joint; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Inflammatory Agents; Antibodies, Bacterial; Antifungal Agents; Antimalarials; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Antiretroviral Therapy, Highly Active; Antiviral Agents; Aotidae; Apelin; Apoptosis; Arabidopsis Proteins; Argentina; Arginine; Artemisinins; Arthritis, Experimental; Arthritis, Rheumatoid; Arthroscopy; Aspergillus; Aspergillus niger; Asteraceae; Asthma; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; Auditory Cortex; Autoantibodies; Autophagy; Bacteria; Bacterial Infections; Bacterial Proteins; Bacterial Typing Techniques; Base Composition; Base Sequence; Basketball; Beclin-1; Benzhydryl Compounds; Benzimidazoles; Benzo(a)pyrene; Benzofurans; Benzoxazines; Bereavement; beta Catenin; beta-Lactamase Inhibitors; beta-Lactamases; beta-Lactams; Betacoronavirus; Betaine; Binding Sites; Biofilms; Biological Assay; Biological Availability; Biological Evolution; Biomarkers; Biomechanical Phenomena; Biopolymers; Biopsy; Bismuth; Blood Glucose; Blood Platelets; Blood Pressure; Body Composition; Body Weight; Bone Marrow; Bone Marrow Cells; Bone Regeneration; Boron; Botrytis; Brain Ischemia; Brain Neoplasms; Brain-Derived Neurotrophic Factor; Brazil; Breast Neoplasms; Breath Tests; Bronchoalveolar Lavage Fluid; Burkholderia; C-Reactive Protein; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Calcification, Physiologic; Calcium; Calcium Signaling; Calorimetry, Differential Scanning; Cameroon; Camptothecin; Candida; Candida albicans; Capillaries; Carbapenem-Resistant Enterobacteriaceae; Carbapenems; Carbohydrate Conformation; Carbon; Carbon Dioxide; Carbon Isotopes; Carcinoma, Ovarian Epithelial; Cardiac Output; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cardiovascular Diseases; Caregivers; Carps; Case-Control Studies; Catalase; Catalysis; Cats; CD4 Lymphocyte Count; Cell Culture Techniques; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Survival; Cells, Cultured; Cellulose; Centrosome; Ceratopogonidae; Chickens; Child; China; Cholera Toxin; Choline; Cholinesterases; Chromatography, High Pressure Liquid; Chromatography, Liquid; Chromatography, Micellar Electrokinetic Capillary; Chromatography, Reverse-Phase; Chronic Disease; Cinnamates; Cities; Citrates; Climate Change; Clinical Trials, Phase III as Topic; Coal; Coal Mining; Cohort Studies; Coinfection; Colchicine; Colony Count, Microbial; Colorectal Neoplasms; Coloring Agents; Common Cold; Complement Factor H; Computational Biology; Computer Simulation; Continuous Positive Airway Pressure; Contrast Media; Coordination Complexes; Coronary Artery Bypass; Coronavirus 3C Proteases; Coronavirus Infections; Coronavirus Protease Inhibitors; Corynebacterium glutamicum; Cosmetics; COVID-19; Creatinine; Cross-Sectional Studies; Crotonates; Crystallography, X-Ray; Cues; Culicidae; Culture Media; Curcuma; Cyclopentanes; Cyclopropanes; Cymbopogon; Cystine; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C19 Inhibitors; Cytokines; Databases, Genetic; Death; Dendritic Cells; Density Functional Theory; Depsides; Diabetes Mellitus, Type 2; Diamond; Diarylheptanoids; Dibenzofurans; Dibenzofurans, Polychlorinated; Diclofenac; Diet; Dietary Carbohydrates; Dietary Supplements; Diffusion Magnetic Resonance Imaging; Dioxins; Diphenylamine; Disease Outbreaks; Disease Susceptibility; Disulfides; Dithiothreitol; Dizocilpine Maleate; DNA Methylation; DNA-Binding Proteins; DNA, Bacterial; Dogs; Dose-Response Relationship, Drug; Double-Blind Method; Doublecortin Protein; Drosophila melanogaster; Droughts; Drug Carriers; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Resistance; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Dust; Dynactin Complex; Dysferlin; Echo-Planar Imaging; Echocardiography; Edaravone; Egypt; Elasticity; Electrodes; Electrolytes; Emodin; Emtricitabine; Endometriosis; Endothelium, Vascular; Endotoxins; Energy Metabolism; Energy Transfer; Enterobacteriaceae; Enterococcus faecalis; Enterotoxigenic Escherichia coli; Environmental Monitoring; Enzyme Inhibitors; Epidemiologic Factors; Epigenesis, Genetic; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Vaccines; Esophageal Neoplasms; Esophagectomy; Esophagogastric Junction; Esterases; Esterification; Ethanol; Ethiopia; Ethnicity; Eucalyptus; Evidence-Based Practice; Exercise; Exercise Tolerance; Extracorporeal Membrane Oxygenation; Family; Fatty Acids; Feedback; Female; Ferric Compounds; Fibrin Fibrinogen Degradation Products; Filtration; Fish Diseases; Flavonoids; Flavonols; Fluorodeoxyglucose F18; Follow-Up Studies; Food Microbiology; Food Preservation; Forests; Fossils; Free Radical Scavengers; Freund's Adjuvant; Fruit; Fungi; Gallium; Gender Identity; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Genes, Bacterial; Genes, Plant; Genetic Predisposition to Disease; Genitalia; Genotype; Glomerulonephritis, IGA; Glottis; Glucocorticoids; Glucose; Glucuronides; Glutathione Transferase; Glycogen Synthase Kinase 3 beta; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Grassland; Guinea Pigs; Half-Life; Head Kidney; Heart Atria; Heart Rate; Heart Septum; HEK293 Cells; Hematopoietic Stem Cells; Hemodynamics; Hep G2 Cells; Hepacivirus; Hepatitis C; Hepatitis C, Chronic; Hepatocytes; Hesperidin; High-Frequency Ventilation; High-Temperature Requirement A Serine Peptidase 1; Hippocampus; Hirudins; History, 20th Century; History, 21st Century; HIV Infections; Homeostasis; Hominidae; Housing, Animal; Humans; Hydrocarbons, Brominated; Hydrogen Bonding; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxybutyrates; Hydroxyl Radical; Hypertension; Hypothyroidism; Image Interpretation, Computer-Assisted; Immunoconjugates; Immunogenic Cell Death; Indoles; Infant, Newborn; Infant, Premature; Infarction, Middle Cerebral Artery; Inflammation; Inflammation Mediators; Infrared Rays; Inhibitory Concentration 50; Injections, Intravenous; Interferon-gamma; Interleukin-23; Interleukin-4; Interleukin-6; Intermediate Filaments; Intermittent Claudication; Intestine, Small; Iridoid Glucosides; Iridoids; Iron; Isomerism; Isotope Labeling; Isoxazoles; Itraconazole; Kelch-Like ECH-Associated Protein 1; Ketoprofen; Kidney Failure, Chronic; Kinetics; Klebsiella pneumoniae; Lactams, Macrocyclic; Lactobacillus; Lactulose; Lakes; Lamivudine; Laparoscopy; Laparotomy; Laryngoscopy; Leucine; Limit of Detection; Linear Models; Lipid A; Lipopolysaccharides; Listeria monocytogenes; Liver; Liver Cirrhosis; Logistic Models; Longitudinal Studies; Losartan; Low Back Pain; Lung; Lupinus; Lupus Erythematosus, Systemic; Machine Learning; Macular Degeneration; Madin Darby Canine Kidney Cells; Magnetic Phenomena; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Magnetics; Malaria, Falciparum; Male; Mannans; MAP Kinase Signaling System; Mass Spectrometry; Melatonin; Membrane Glycoproteins; Membrane Proteins; Meniscectomy; Menisci, Tibial; Mephenytoin; Mesenchymal Stem Cells; Metal Nanoparticles; Metal-Organic Frameworks; Methionine; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, Obese; Mice, Transgenic; Microbial Sensitivity Tests; Microcirculation; MicroRNAs; Microscopy, Video; Microtubules; Microvascular Density; Microwaves; Middle Aged; Minimally Invasive Surgical Procedures; Models, Animal; Models, Biological; Models, Molecular; Models, Theoretical; Molecular Docking Simulation; Molecular Structure; Molecular Weight; Morus; Mouth Floor; Multicenter Studies as Topic; Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Muscle, Skeletal; Myocardial Ischemia; Myocardium; NAD; NADP; Nanocomposites; Nanoparticles; Naphthols; Nasal Lavage Fluid; Nasal Mucosa; Neisseria meningitidis; Neoadjuvant Therapy; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Neoplasms, Experimental; Neural Stem Cells; Neuroblastoma; Neurofilament Proteins; Neurogenesis; Neurons; New York; NF-E2-Related Factor 2; NF-kappa B; Nicotine; Nitriles; Nitrogen; Nitrogen Fixation; North America; Observer Variation; Occupational Exposure; Ochrobactrum; Oils, Volatile; Olea; Oligosaccharides; Omeprazole; Open Field Test; Optimism; Oregon; Oryzias; Osmolar Concentration; Osteoarthritis; Osteoblasts; Osteogenesis; Ovarian Neoplasms; Ovariectomy; Oxadiazoles; Oxidation-Reduction; Oxidative Stress; Oxygen; Ozone; p38 Mitogen-Activated Protein Kinases; Pakistan; Pandemics; Particle Size; Particulate Matter; Patient-Centered Care; Pelargonium; Peptides; Perception; Peripheral Arterial Disease; Peroxides; Pets; Pharmaceutical Preparations; Pharmacogenetics; Phenobarbital; Phenols; Phenotype; Phosphates; Phosphatidylethanolamines; Phosphines; Phospholipids; Phosphorus; Phosphorylation; Photoacoustic Techniques; Photochemotherapy; Photosensitizing Agents; Phylogeny; Phytoestrogens; Pilot Projects; Plant Components, Aerial; Plant Extracts; Plant Immunity; Plant Leaves; Plant Oils; Plants, Medicinal; Plasmodium berghei; Plasmodium falciparum; Platelet Activation; Platelet Function Tests; Pneumonia, Viral; Poaceae; Pogostemon; Poloxamer; Poly I; Poly(ADP-ribose) Polymerase Inhibitors; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Polycyclic Compounds; Polyethylene Glycols; Polylysine; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Population Dynamics; Portasystemic Shunt, Transjugular Intrahepatic; Positron Emission Tomography Computed Tomography; Postoperative Complications; Postprandial Period; Potassium Cyanide; Predictive Value of Tests; Prefrontal Cortex; Pregnancy; Prepulse Inhibition; Prevalence; Procalcitonin; Prodrugs; Prognosis; Progression-Free Survival; Proline; Proof of Concept Study; Prospective Studies; Protein Binding; Protein Conformation; Protein Domains; Protein Folding; Protein Multimerization; Protein Sorting Signals; Protein Structure, Secondary; Proton Pump Inhibitors; Protozoan Proteins; Psychometrics; Pulse Wave Analysis; Pyridines; Pyrrolidines; Quality of Life; Quantum Dots; Quinoxalines; Quorum Sensing; Radiopharmaceuticals; Rain; Random Allocation; Randomized Controlled Trials as Topic; Rats; Rats, Sprague-Dawley; Rats, Wistar; RAW 264.7 Cells; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptor, PAR-1; Receptors, CXCR4; Receptors, Estrogen; Receptors, Glucocorticoid; Receptors, Interleukin-1; Receptors, Interleukin-17; Receptors, Notch; Recombinant Fusion Proteins; Recombinant Proteins; Reducing Agents; Reflex, Startle; Regional Blood Flow; Regression Analysis; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Tract Diseases; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Risk Assessment; Risk Factors; Rituximab; RNA, Messenger; RNA, Ribosomal, 16S; ROC Curve; Rosmarinic Acid; Running; Ruthenium; Rutin; Sarcolemma; Sarcoma; Sarcopenia; Sarcoplasmic Reticulum; SARS-CoV-2; Scavenger Receptors, Class A; Schools; Seasons; Seeds; Sequence Analysis, DNA; Severity of Illness Index; Sex Factors; Shock, Cardiogenic; Short Chain Dehydrogenase-Reductases; Signal Transduction; Silver; Singlet Oxygen; Sinusitis; Skin; Skin Absorption; Small Molecule Libraries; Smoke; Socioeconomic Factors; Soil; Soil Microbiology; Solid Phase Extraction; Solubility; Solvents; Spain; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Speech; Speech Perception; Spindle Poles; Spleen; Sporothrix; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Stomach Neoplasms; Stress, Physiological; Stroke Volume; Structure-Activity Relationship; Substrate Specificity; Sulfonamides; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Rate; T-Lymphocytes, Cytotoxic; Tandem Mass Spectrometry; Temperature; Tenofovir; Terpenes; Tetracycline; Tetrapleura; Textiles; Thermodynamics; Thiobarbituric Acid Reactive Substances; Thrombin; Thyroid Hormones; Thyroid Neoplasms; Tibial Meniscus Injuries; Time Factors; Tissue Distribution; Titanium; Toluidines; Tomography, X-Ray Computed; Tooth; Tramadol; Transcription Factor AP-1; Transcription, Genetic; Transfection; Transgender Persons; Translations; Treatment Outcome; Triglycerides; Ubiquinone; Ubiquitin-Specific Proteases; United Kingdom; United States; Up-Regulation; Vascular Stiffness; Veins; Ventricular Remodeling; Viral Load; Virulence Factors; Virus Replication; Vitis; Voice; Voice Quality; Wastewater; Water; Water Pollutants, Chemical; Water-Electrolyte Balance; Weather; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Young Adult; Zoogloea | 2022 |
Therapy of gram-negative sepsis in man with anti-endotoxin antibodies: a review.
Topics: Endotoxins; Gram-Negative Bacterial Infections; Humans; Immunization, Passive; Lipid A; Sepsis | 1991 |
Randomized, double-blind phase II study of anti-endotoxin antibody (E5) as adjuvant therapy in humans with serious gram-negative infections.
Xomen-E5 (E5) is a murine monoclonal IgM antibody (MAb) that binds to the lipid A epitope of endotoxin. The MAb was developed by immunization against the J5 mutant of Escherichia coli. Prior studies in humans have shown safety and T1/2 of 18.4 hours. In this double blind study patients suspected to have life threatening gram-negative infections were randomized to receive 2 doses, 24 hours apart, of placebo (P), 2.5 mg/kg E5, or 7.5 mg/kg E5. Overall 23 patients had a documented serious gram-negative infection and received at least one dose of study drug. Mortality 3 days after last infusion was 2 of 9 for P, 0 of 9 for 2.5 mg/kg, and 0 of 5 for 7.5 mg/kg. By 21 days after therapy one E5 treated patient had died. Wheezes occurred in one E5 treated patient. Eight of 15 E5 patients treated had IgG anti-murine antibodies by 3 weeks after therapy. These data suggest the need to pursue studies designed to verify that E5 reduced mortality and morbidity in seriously ill patients with gram-negative infections. Topics: Antibodies, Monoclonal; Antibody Formation; Combined Modality Therapy; Dopamine; Double-Blind Method; Drug Evaluation; Female; Gram-Negative Bacterial Infections; Humans; Lipid A; Male; Middle Aged | 1991 |
27 other study(ies) available for lipid-a and Gram-Negative-Bacterial-Infections
Article | Year |
---|---|
ELAVL1a is an immunocompetent protein that protects zebrafish embryos from bacterial infection.
Previous studies have shown that ELAVL1 plays multiple roles, but its overall biological function remains ill-defined. Here we clearly demonstrated that zebrafish ELAVL1a was a lipoteichoic acid (LTA)- and LPS-binding protein abundantly stored in the eggs/embryos of zebrafish. ELAVL1a acted not only as a pattern recognition receptor, capable of identifying LTA and LPS, as well as bacteria, but also as an effector molecule, capable of inhibiting the growth of Gram-positive and -negative bacteria. Furthermore, we reveal that the C-terminal 62 residues of ELAVL1a positioned at 181-242 were indispensable for ELAVL1a antibacterial activity. Additionally, site-directed mutagenesis revealed that the hydrophobic residues Val192/Ile193, as well as the positively charged residues Arg203/Arg204, were the functional determinants contributing to the antimicrobial activity of rELAVL1a. Importantly, microinjection of rELAVL1a into embryos markedly promoted their resistance against pathogenic Aeromonas hydrophila challenge, and this pathogen-resistant activity was considerably reduced by co-injection of anti-ELAVL1a antibody or by knockdown with morpholino for elavl1a. Collectively, our results indicate that ELAVL1a is a maternal immune factor that can protect zebrafish embryos from bacterial infection. This work also provides another angle for understanding the biological roles of ELAVL1a. Topics: Animals; ELAV Proteins; Gene Expression Regulation, Developmental; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Gram-Positive Bacterial Infections; Lipid A; Lipopolysaccharides; Mutation; Phylogeny; Protein Binding; Teichoic Acids; Zebrafish; Zebrafish Proteins | 2021 |
SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity.
There is a link between high lipopolysaccharide (LPS) levels in the blood and the metabolic syndrome, and metabolic syndrome predisposes patients to severe COVID-19. Here, we define an interaction between SARS-CoV-2 spike (S) protein and LPS, leading to aggravated inflammation in vitro and in vivo. Native gel electrophoresis demonstrated that SARS-CoV-2 S protein binds to LPS. Microscale thermophoresis yielded a KD of ∼47 nM for the interaction. Computational modeling and all-atom molecular dynamics simulations further substantiated the experimental results, identifying a main LPS-binding site in SARS-CoV-2 S protein. S protein, when combined with low levels of LPS, boosted nuclear factor-kappa B (NF-κB) activation in monocytic THP-1 cells and cytokine responses in human blood and peripheral blood mononuclear cells, respectively. The in vitro inflammatory response was further validated by employing NF-κB reporter mice and in vivo bioimaging. Dynamic light scattering, transmission electron microscopy, and LPS-FITC analyses demonstrated that S protein modulated the aggregation state of LPS, providing a molecular explanation for the observed boosting effect. Taken together, our results provide an interesting molecular link between excessive inflammation during infection with SARS-CoV-2 and comorbidities involving increased levels of bacterial endotoxins. Topics: Animals; Binding Sites; COVID-19; Cytokine Release Syndrome; Disease Models, Animal; Gram-Negative Bacterial Infections; Humans; In Vitro Techniques; Inflammation; Lipid A; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Mice, Transgenic; Models, Immunological; Models, Molecular; Molecular Docking Simulation; Protein Binding; Protein Interaction Domains and Motifs; Respiratory Distress Syndrome; Risk Factors; SARS-CoV-2; Spike Glycoprotein, Coronavirus | 2020 |
Comparative analysis of phosphoethanolamine transferases involved in polymyxin resistance across 10 clinically relevant Gram-negative bacteria.
The rapid emergence of Gram-negative 'superbugs' has become a significant threat to human health globally, and polymyxins have become a last-line therapy for these very problematic pathogens. Polymyxins exhibit their antibacterial killing by initial interaction with lipid A in Gram-negative bacteria. Polymyxin resistance can be mediated by phosphoethanolamine (PEA) modification of lipid A, which abolishes the initial electrostatic interaction with polymyxins. Both chromosome-encoded (e.g. EptA, EptB and EptC) and plasmid-encoded (e.g. MCR-1 and MCR-2) PEA transferases have been reported in Gram-negative bacteria; however, their sequence and functional heterogeneity remain unclear. This article reports a comparative analysis of PEA transferases across 10 clinically relevant Gram-negative bacterial species using multiple sequence alignment and phylogenetic analysis. The results show that the pairwise identities among chromosome-mediated EptA, EptB and EptC from Escherichia coli are low, and EptA shows the greatest similarity with MCR-1 and MCR-2. Among PEA transferases from representative strains of 10 clinically relevant species, the catalytic domain is more conserved compared with the transmembrane domain. In particular, PEA acceptor sites and zinc-binding pockets show high conservation between different species, indicating their potential importance for the function of PEA transferases. The evolutionary relationship of MCR-1, MCR-2 and EptA from the 10 selected bacterial species was evaluated by phylogenetic analysis. Cluster analysis illustrates that 325 EptA from 275 strains of 10 species within each individual species are highly conserved, whereas interspecies conservation is low. This comparative analysis provides key bioinformatic information to better understand the mechanism of polymyxin resistance via PEA modification of lipid A. Topics: Amino Acid Sequence; Anti-Bacterial Agents; Base Sequence; Catalytic Domain; Drug Resistance, Multiple, Bacterial; Escherichia coli Proteins; Ethanolaminephosphotransferase; Ethanolamines; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Lipid A; Membrane Proteins; Phosphotransferases (Alcohol Group Acceptor); Phylogeny; Polymyxins; Sequence Alignment | 2018 |
Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC.
The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Benzamides; Disease Models, Animal; Drug Resistance, Multiple, Bacterial; Enzyme Inhibitors; Female; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Lipid A; Mice; Morpholines; Plague; Yersinia pestis | 2017 |
Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance.
Infections caused by multi-drug resistant bacteria, particularly Gram-negative bacteria, are an ever-increasing problem. While the development of new antibiotics remains one option in the fight against bacteria that have become resistant to currently available antibiotics, an attractive alternative is the development of adjuvant therapeutics that restore the efficacy of existing antibiotics. We report a small molecule adjuvant that suppresses colistin resistance in multidrug resistant Acinetobacter baumannii and Klebsiella pneumoniae by interfering with the expression of a two-component system. The compound downregulates the pmrCAB operon and reverses phosphoethanolamine modification of lipid A responsible for colistin resistance. Furthermore, colistin-susceptible and colistin-resistant bacteria do not evolve resistance to combination treatment. This represents the first definitive example of a compound that breaks antibiotic resistance by directly modulating two-component system activity. Topics: Anti-Bacterial Agents; Bacterial Proteins; Colistin; Down-Regulation; Drug Resistance, Multiple, Bacterial; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A; Small Molecule Libraries; Transcription Factors | 2014 |
Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.
Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS. Topics: Animals; Apoptosis Regulatory Proteins; Calcium-Binding Proteins; Caspases; Caspases, Initiator; Cross-Priming; Enzyme Activation; Francisella; Gram-Negative Bacterial Infections; Lipid A; Mice; Mice, Inbred C57BL; Poly I-C; Salmonella; Salmonella Infections; Shock, Septic; Toll-Like Receptor 4 | 2013 |
Role of Francisella lipid A phosphate modification in virulence and long-term protective immune responses.
Lipopolysaccharide (LPS) structural modifications have been shown to specifically affect the pathogenesis of many gram-negative pathogens. In Francisella, modification of the lipid A component of LPS resulted in a molecule with no to low endotoxic activity. The role of the terminal lipid A phosphates in host recognition and pathogenesis was determined using a Francisella novicida mutant that lacked the 4' phosphatase enzyme (LpxF). The lipid A of this strain retained the phosphate moiety at the 4' position and the N-linked fatty acid at the 3' position on the diglucosamine backbone. Studies were undertaken to determine the pathogenesis of this mutant strain via the pulmonary and subcutaneous routes of infection. Mice infected with the lpxF-null F. novicida mutant by either route survived primary infection and subsequently developed protective immunity against a lethal wild-type (WT) F. novicida challenge. To determine the mechanism(s) by which the host controlled primary infection by the lpxF-null mutant, the role of innate immune components, including Toll-like receptor 2 (TLR2), TLR4, caspase-1, MyD88, alpha interferon (IFN-α), and gamma interferon(IFN-γ), was examined using knockout mice. Interestingly, only the IFN-γ knockout mice succumbed to a primary lpxF-null F. novicida mutant infection, highlighting the importance of IFN-γ production. To determine the role of components of the host adaptive immune system that elicit the long-term protective immune response, T- and B-cell deficient RAG1(-/-) mice were examined. All mice survived primary infection; however, RAG1(-/-) mice did not survive WT challenge, highlighting a role for T and B cells in the protective immune response. Topics: Animals; Cytokines; Disease Models, Animal; Female; Francisella; Gene Knockout Techniques; Gram-Negative Bacterial Infections; Immunity, Innate; Lipid A; Mice; Mice, Inbred C57BL; Mice, Knockout; Phosphates; Phosphoric Monoester Hydrolases; Receptors, Immunologic; Survival Analysis; Virulence | 2012 |
LPS remodeling is an evolved survival strategy for bacteria.
Maintenance of membrane function is essential and regulated at the genomic, transcriptional, and translational levels. Bacterial pathogens have a variety of mechanisms to adapt their membrane in response to transmission between environment, vector, and human host. Using a well-characterized model of lipid A diversification (Francisella), we demonstrate temperature-regulated membrane remodeling directed by multiple alleles of the lipid A-modifying N-acyltransferase enzyme, LpxD. Structural analysis of the lipid A at environmental and host temperatures revealed that the LpxD1 enzyme added a 3-OH C18 acyl group at 37 °C (host), whereas the LpxD2 enzyme added a 3-OH C16 acyl group at 18 °C (environment). Mutational analysis of either of the individual Francisella lpxD genes altered outer membrane (OM) permeability, antimicrobial peptide, and antibiotic susceptibility, whereas only the lpxD1-null mutant was attenuated in mice and subsequently exhibited protection against a lethal WT challenge. Additionally, growth-temperature analysis revealed transcriptional control of the lpxD genes and posttranslational control of the LpxD1 and LpxD2 enzymatic activities. These results suggest a direct mechanism for LPS/lipid A-level modifications resulting in alterations of membrane fluidity, as well as integrity and may represent a general paradigm for bacterial membrane adaptation and virulence-state adaptation. Topics: Acyltransferases; Animals; Bacterial Proteins; Biological Evolution; Body Temperature; Cell Membrane Permeability; Francisella; Gram-Negative Bacterial Infections; Host-Pathogen Interactions; Kinetics; Lipid A; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Microbial Viability; Mutation; Phylogeny; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Temperature; Virulence | 2012 |
NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis.
Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram-negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria. Topics: Amidohydrolases; Animals; Bacterial Proteins; Cell Line; Female; Francisella; Francisella tularensis; Gram-Negative Bacterial Infections; Humans; Lipid A; Macrophages; Mice; Mice, Inbred C57BL; Sequence Alignment; Virulence | 2012 |
Mechanisms of polymyxin B endotoxin removal from extracorporeal blood flow: molecular interactions.
The outer leaflet of Gram-negative bacteria membrane contains a great amount of lipopolysaccharides, also known as endotoxins, which play a central role in the pathogenesis of septic shock. It has been demonstrated that the polymyxin B (PMB) molecule has both antibacterial and antiendotoxin capabilities; in fact, it is able to compromise the bacterial outer membrane and bind lipopolysaccharides, thereby neutralizing its toxic effects. Extracorporeal hemoperfusion treatments based on cartridges containing PMB-immobilized fibers (Toraymyxin PMX-F; Toray Industries, Tokyo, Japan) are used to remove endotoxins circulating in the blood flow. In this study, we focused on the characterization of the interactions occurring in the formation of the PMB-endotoxin complex at the molecular level. In particular, the molecular mechanics approach was used to evaluate the interaction energy and eventually the interaction force between the two molecules. PMB was faced with five molecular portions of lipopolysaccharides differing in their structure. The interaction energy occurring for each molecular complex was calculated at different intermolecular distances and the binding forces were estimated by fitting interaction energy data. Results show that the short-range interactions between PMB and endotoxins are mediated mainly by hydrophobic forces, while in the long term, the complex formation is driven by ionic forces only. Maximum binding forces calculated via molecular mechanics for the PMB-endotoxin complex are in the range of 1.39-3.79 nN. Understanding the interaction mechanism of the single molecular complex is useful both in order to figure out the molecular features of such interaction and to perform higher scale level analysis, where such nanoscale detail is impractical but could be used to account for molecular behavior at a coarse level of discretization. Topics: Anti-Bacterial Agents; Binding Sites; Blood Flow Velocity; Endotoxins; Extracorporeal Circulation; Gram-Negative Bacterial Infections; Humans; Lipid A; Lipopolysaccharides; Models, Molecular; Molecular Conformation; Polymyxin B | 2010 |
A new class of UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections: PCT application WO 2008027466.
Human infections due to Gram-negative bacteria cause significant morbidity and mortality. Identification of new strategies, molecular targets, and agents for the treatment of Gram-negative bacterial infections are needed urgently. Lipid A is a necessary component of the lipopolysaccharide-containing outer membrane of Gram-negative bacteria. The zinc-dependent hydrolase UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) involved in the first committed step in the biosynthetic pathway of lipid A has no sequence homology to any known mammalian enzymes and has emerged as an attractive Gram-negative antibacterial molecular target. Most previously described LpxC inhibitors contain a hydroxamic acid, which can lead to low specificity vs. other metal-dependent enzymes and can consequently result in unwanted side effects.. This review examines a new reported class of nonhydroxamic LpxC inhibitors for the treatment of Gram-negative infections.. The new class of inhibitor is compared with several previously reported LpxC inhibitors.. The LpxC inhibitors disclosed in PCT application WO 2008027466 contain hydantoins in place of the hydroxamic acids commonly found in most previously described inhibitors. These molecules could represent a means of treating Gram-negative infections via a more selective inhibition of LpxC. Topics: Amidohydrolases; Anti-Bacterial Agents; Drug Delivery Systems; Enzyme Inhibitors; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Lipid A; Patents as Topic | 2009 |
An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana.
Lipopolysaccharides, the ubiquitous part of the outer membrane of Gram-negative bacteria, and their derivatives are recognised by plants to trigger or potentiate particular defence responses such as induction of genes encoding pathogenesis-related proteins. The molecular mechanisms of LPS perception that underpin these effects in plants are, however, unknown. Here, lipid A from Halomonas magadiensis, which is an antagonist of lipid A action in human cells, was used to investigate lipid A action in plants. Our findings offer an insight into the different structural requirements for direct induction and potentiation of plant defences by lipid A. Topics: Arabidopsis; Escherichia coli; Escherichia coli Infections; Gene Expression Regulation, Plant; Gram-Negative Bacterial Infections; Halomonas; Lipid A; Plant Leaves; Plant Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Plant | 2008 |
Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia.
Stenotrophomonas maltophilia is a multiple-antibiotic-resistant opportunistic pathogen that is being isolated with increasing frequency from patients with health-care-associated infections and especially from patients with cystic fibrosis (CF). While clinicians feel compelled to treat infections involving this organism, its potential for virulence is not well established. We evaluated the immunostimulatory properties and overall virulence of clinical isolates of S. maltophilia using the well-characterized opportunistic pathogen Pseudomonas aeruginosa PAO1 as a control. The properties of CF isolates were examined specifically to see if they have a common phenotype. The immunostimulatory properties of S. maltophilia were studied in vitro by stimulating airway epithelial and macrophage cell lines. A neonatal mouse model of pneumonia was used to determine the rates of pneumonia, bacteremia, and mortality, as well as the inflammatory response elicited by S. maltophilia infection. Respiratory and nonrespiratory S. maltophilia isolates were highly immunostimulatory and elicited significant interleukin-8 expression by airway epithelial cells, as well as tumor necrosis factor alpha (TNF-alpha) expression by macrophages. TNF-alpha signaling appears to be important in the pathogenesis of S. maltophilia infection as less than 20% of TNFR1 null mice (compared with 100% of wild-type mice) developed pneumonia and bacteremia following intranasal inoculation. The S. maltophilia isolates were weakly invasive, and low-level bacteremia with no mortality was observed. Despite the lack of invasiveness of S. maltophilia, the immunostimulatory properties of this organism and its induction of TNF-alpha expression specifically indicate that it is likely to contribute significantly to airway inflammation. Topics: Animals; Bacteremia; Cell Line; Cystic Fibrosis; Epithelial Cells; Gram-Negative Bacterial Infections; Humans; Interleukin-8; Lipid A; Macrophages; Mice; Mice, Inbred C57BL; Mice, Transgenic; Phagocytosis; Pneumonia, Bacterial; Pseudomonas aeruginosa; Receptors, Tumor Necrosis Factor, Type I; Respiratory Mucosa; Respiratory Tract Infections; Stenotrophomonas maltophilia; Tumor Necrosis Factor-alpha | 2007 |
Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli.
The deacetylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine (UDP-3-O-acyl-GlcNAc) by LpxC is the committed reaction of lipid A biosynthesis. CHIR-090, a novel N-aroyl-l-threonine hydroxamic acid, is a potent, slow, tight-binding inhibitor of the LpxC deacetylase from the hyperthermophile Aquifex aeolicus, and it has excellent antibiotic activity against Pseudomonas aeruginosa and Escherichia coli, as judged by disk diffusion assays. We now report that CHIR-090 is also a two-step slow, tight-binding inhibitor of E. coli LpxC with Ki = 4.0 nM, Ki* = 0.5 nM, k5 = 1.9 min-1, and k6 = 0.18 min-1. CHIR-090 at low nanomolar levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including P. aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki = 340 nM), a Gram-negative plant endosymbiont that is resistant to this compound. The KM (4.8 microM) and the kcat (1.7 s-1) of R. leguminosarum LpxC with UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine as the substrate are similar to values reported for E. coli LpxC. R. leguminosarum LpxC therefore provides a useful control for validating LpxC as the primary target of CHIR-090 in vivo. An E. coli construct in which the chromosomal lpxC gene is replaced by R. leguminosarum lpxC is resistant to CHIR-090 up to 100 microg/mL, or 400 times above the minimal inhibitory concentration for wild-type E. coli. Given its relatively broad spectrum and potency against diverse Gram-negative pathogens, CHIR-090 is an excellent lead for the further development of new antibiotics targeting the lipid A pathway. Topics: Amidohydrolases; Anti-Bacterial Agents; Escherichia coli; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Hydroxamic Acids; Kinetics; Lipid A | 2007 |
Toll-like receptor 4, nitric oxide, and myocardial depression in endotoxemia.
The molecular mechanisms that mediate gram-negative sepsis-associated myocardial dysfunction remain elusive. Myocardial expression of inflammatory mediators is Toll-like receptor 4 (TLR4) dependent. However, it remains to be elucidated whether TLR4, expressed on cardiac myocytes, mediates impairment of cardiac contractility after lipopolysaccharide (LPS) application. Cardiac myocyte contractility, measured as sarcomere shortening of isolated cardiac myocytes from C3H/HeJ (with nonfunctional TLR4) and C3H/HeN (control), were recorded at stimulation frequencies between 0.5 and 10 Hz and after incubation with 1 and 10 mug/mL LPS for up to 8 h. Control cells treated with LPS were investigated with and without a competitive LPS inhibitor (E5564) and a specific inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea. In control mice, LPS reduced sarcomere shortening amplitude and prolonged duration of relaxation, whereas sarcomere shortening of C3H/HeJ cells was insensitive to LPS. NFkappaB and iNOS were upregulated after LPS application in control mice compared with C3H/HeJ. Inhibition of TLR4 by E5564 as well as inhibition of iNOS prevented the influence of LPS on contractile activity in control myocytes. LPS-dependent suppression of cardiac myocyte contractility was significantly blunted in C3H/HeJ mice. Competitive inhibition of functional TLR4 with E5564 protects cardiac myocyte contractility against LPS. These findings suggest that TLR4, expressed on cardiac myocytes, contributes to sepsis-induced myocardial dysfunction. E5564, currently under investigation in two clinical phase II trials, seems to be a new therapeutic option for the treatment of myocardial dysfunction in sepsis associated with endotoxemia. Topics: Animals; Cardiomyopathies; Cells, Cultured; Endotoxemia; Enzyme Inhibitors; Gram-Negative Bacterial Infections; Isothiuronium; Lipid A; Lipopolysaccharides; Mice; Myocardial Contraction; Myocardium; Myocytes, Cardiac; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Sarcomeres; Toll-Like Receptor 4 | 2006 |
Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2.
Lipopolysaccharide (LPS) derived from enterobacteria elicit in several cell types cellular responses that are restricted in the use of Toll-like receptor 4 (TLR4) as the principal signal-transducing molecule. A tendency to consider enterobacterial LPS as a prototypic LPS led some authors to present this mechanism as a paradigm accounting for all LPSs in all cell types. However, the structural diversity of LPS does not allow such a general statement. By using LPSs from bacteria that do not belong to the Enterobacteriaceae, we show that in bone marrow cells (BMCs) the LPS of Rhizobium species Sin-1 and of three strains of Legionella pneumophila require TLR2 rather than TLR4 to elicit the expression of CD14. In addition, exposure of BMCs from TLR4-deficient (C3H/HeJ) mice to the lipid A fragment of the Bordetella pertussis LPS inhibits their activation by the Legionella lipid A. The data show selective action of different LPSs via different TLRs, and suggest that TLR2 can interact with many lipid A structures, leading to either agonistic or specific antagonistic effects. Topics: Animals; Chemotaxis, Leukocyte; Gram-Negative Bacterial Infections; Granulocytes; Legionella pneumophila; Lipid A; Lipopolysaccharide Receptors; Lipopolysaccharides; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Receptors, Cell Surface; Rhizobium; Toll-Like Receptor 2; Toll-Like Receptor 4; Toll-Like Receptors | 2003 |
Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro.
Several studies have shown that lipopolysaccharide and lipid A impair red blood cell deformability and. However, it is unclear whether impaired red blood cell deformability is associated with binding of lipopolysaccharide to the red blood cell membrane.. Analysis of hydroxymyristic acid content in red blood cell membranes and red blood cell deformation in patients with Gram-negative septicemia and after incubation of red blood cells from healthy adults with 100 microg of lipid A or 1 mg of lipopolysaccharide per milliliter of red blood cell in buffer solution and in whole blood. Hydroxymyristic acid is a fatty acid of the lipid A part of lipopolysaccharide in most Gram-negative bacteria.. University research laboratories.. Ten healthy adults and four patients with clinical and laboratory signs of septicemia.. Blood sampling.. Red blood cell deformation was measured with a laser-diffraction shearing device (Rheodyn) and a computerized micropore filtration system (CTA). Lipopolysaccharide and lipid A binding to red blood cell membranes was studied by measuring the amide-linked hydroxymyristic acid by gas chromatography. The detection rates of hydroxymyristic acid were 82% for lipopolysaccharide and 79% for lipid A in buffer solution. In membranes of washed red blood cell, the detection rates of lipopolysaccharide and lipid A were 0.26 +/- 0.03% (2.6 +/- 0.3 microg/mL) and 1.3 +/- 0.5% (1.3 +/- 0.5 microg/mL), and in red blood cell membranes of whole blood the detection rates were 2.6% (25.5 microg/mL) and 4.1% (4.1 microg/mL), respectively. The lipopolysaccharide content in red blood cell membranes of septic patients ranged from 47 to 103 microg/mL of red blood cell. Red blood cell deformation in the Rheodyn and in the CTA were not influenced by lipopolysaccharide incubated with washed red blood cells. In the Rheodyn, red blood cell deformation was significantly decreased by 18% after lipid A incubation in washed red blood cells, by 26% after lipopolysaccharide incubation in whole blood, and by 31% in septic patients. Similar effects were observed when we used the CTA.. Red blood cell deformation is decreased in septic patients, after incubation of washed red blood cells with lipid A and of whole blood with lipopolysaccharide. Lipopolysaccharide did not influence red blood cell deformation after incubation with washed red blood cells. The decrease of red blood cell deformation was related to the amount of hydroxymyristic acid measured in red blood cell membranes, suggesting that endotoxin binding directly affects mechanical properties of red blood cells. Topics: Adult; Bacteremia; Bacterial Proteins; Binding Sites; Biomarkers; Case-Control Studies; Chromatography, Gas; Cytochrome P-450 Enzyme System; Endotoxins; Erythrocyte Deformability; Erythrocyte Membrane; Gram-Negative Bacterial Infections; Humans; Laser-Doppler Flowmetry; Lipid A; Lipopolysaccharides; Microcirculation; Micropore Filters; Mixed Function Oxygenases; NADPH-Ferrihemoprotein Reductase | 2003 |
[Generation and characterization of avian vitelline antibodies against lipopolysaccharide and lipid A. 1. Induction and preparation of specific egg yolk antibodies (IgY) against endotoxins].
The immunisation of mammals with LPS- and lipid A-antigens leads to the production of specific antibodies. In the present study, we describe the generation and preparation of antibodies from egg yolks of immunized chickens. Egg yolk antibodies were raised by immunizing laying hens with five LPS- and three lipid A-preparations from various gram-negative bacteria species in different immunisation protocols. Antibodies from collected egg yolks were extracted and purified by means of several standard methods. The purity of antibody-preparations was measured and compared by SDS-PAGE. Specific antibodies were assayed by two different EIA procedures. It could be shown that the immunisation of hens with LPS- and lipid A-Antigens resulted in the production of specific egg yolk antibodies, regardless of immunisation-scheme and amount of antigen. Topics: Animals; Antibodies, Bacterial; Antibody Formation; Antibody Specificity; Bacterial Vaccines; Chickens; Egg Yolk; Female; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Immunoglobulins; Lipid A; Lipopolysaccharides; Oviposition; Poultry Diseases | 1998 |
[Generation and characterization of avian vitelline antibodies against lipopolysaccharide and lipid A. 2. Investigations of specificity of egg yolk antibodies (IgY) against endotoxin].
Various preparations of egg yolk antibodies against different endotoxins of gram-negative bacteria were characterized with regard to their immunological properties. To do this, we investigated the reactivity of antibodies against a number of lipopolysaccharides and lipid-A by enzyme-immuno-assays and immunoblot. It could be shown that all antibody preparations contained specific antibodies, reactive with their homologous antigen. Furthermore these antibodies showed cross-reactivity with structural diverse LPS- and lipid A-antigens from different sources. Anti lipid A-antibodies appeared to be highly crossreactive with purified LPS and lipid A from several gram-negative organisms. Egg yolk antibodies raised by immunization with LPS showed cross-reactivity with enterobacterial LPS and only marginal reactivity with both LPS from other gram-negative bacteria and lipid A. The results from immunoblot experiments confirmed our findings from EIA-studies. Topics: Animals; Antibody Formation; Antibody Specificity; Chickens; Cross Reactions; Egg Yolk; Enterobacteriaceae; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Immunoblotting; Immunoenzyme Techniques; Immunoglobulins; Lipid A; Lipopolysaccharides; Poultry Diseases | 1998 |
Prevalence of antibodies to lipid A in Danish cattle.
A cross-sectional study was performed on the occurrence of IgG antibodies to lipid A of the Gram-negative bacterial lipopolysaccharide (LPS, endotoxin) on serum of 2272 cattle distributed on 19 Danish dairy herds. The relationship between the concentration of antibodies to lipid A (ALI) and age, herd, pregnancy rate and occurrence of mastitis, bovine virus diarrhoea (BVD), reproductive and digestive disorders, diarrhoea, pneumonia, foot disorders, various infections and traumatic udder lesions was investigated. ALI generally was low in calves and increased during their first 1.5 years of life to a steady state, which could be altered by the occurrence of disease. There were significant differences in the mean ALI among the herds (P < 0.001). High ALI was associated with a low herd pregnancy rate, to preceding occurrence of mastitis (P < 0.048), BVD (P < 0.01), reproduction diseases (P < 0.041) and digestion disorders (P < 0.064) in animals older than 2 years. The calf mortality rate was not associated to ALI and there was no correlation between the ALI in calves and their dams. The occurrence of high ALI levels on a herd basis may be an indication of increased challenge or enhanced immunological defense to Gram-negative bacteria or endotoxin. Topics: Aging; Animals; Antibodies, Bacterial; Bovine Virus Diarrhea-Mucosal Disease; Cattle; Cattle Diseases; Cross-Sectional Studies; Denmark; Diarrhea; Endotoxins; Female; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Immunoglobulin G; Lipid A; Mastitis, Bovine; Pneumonia; Pregnancy; Pregnancy Rate | 1996 |
Diversity in lipid A binding ligands: comparison of lipid A monoclonal antibodies with rBPI23.
1. Mabs with a high affinity for free lipid A do not bind when it is covalently linked, i.e. in the form of LPS. 2. Lipid A-binding Mabs may be divided into three categories: I. Monoreactive Mabs that bind to the hydrophillic backbone of lipid A II. Polyreactive Kdo Mabs III. Polyreactive Mabs that bind by hydrophobic interactions 3. rBPI23 binds either free or covalently linked lipid A. Topics: Animals; Antibodies, Monoclonal; Antimicrobial Cationic Peptides; Binding Sites; Blood Proteins; Gram-Negative Bacterial Infections; Humans; In Vitro Techniques; Ligands; Lipid A; Lipopolysaccharides; Membrane Proteins; Protein Binding; Protein Folding; Recombinant Proteins; Shock, Septic | 1995 |
Suppression of lipopolysaccharide-induced macrophage nitric oxide and cytokine production in vitro by a novel lipopolysaccharide antagonist.
Many of the physiologic derangements resulting in septic shock are caused by inflammatory mediators such as nitric oxide (NO) and cytokines produced in response to bacterial endotoxin or, more specifically, lipopolysaccharide. The recent development of a novel class of lipopolysaccharide antagonists offers the opportunity to block this response selectively. In this article we investigated the ability of one of these antagonists, B464 (Eisai), to block lipopolysaccharide-induced release of macrophage NO and cytokines.. The mouse macrophage cell line RAW264.7 was grown in vitro and exposed to (1) media control, (2) B464 alone, (3) lipopolysaccharide alone, or (4) lipopolysaccharide plus graded concentrations of B464. Supernatants were assayed for nitrite plus nitrate, the stable end products of NO, as well as tumor necrosis factor-alpha and interleukin-6. Total cellular RNA was examined for inducible NO synthase and interleukin-6 mRNA.. Lipopolysaccharide-stimulated increases in NO, tumor necrosis factor, and interleukin-6 production were blocked by B464. Reduction of NO was also seen at the level of inducible NO synthase mRNA. Induction of interleukin-6 mRNA was also suppressed.. B464 is a novel potent specific antagonist of lipopolysaccharide-induced macrophage NO and cytokine production. Topics: Amino Acid Oxidoreductases; Animals; Carbohydrate Sequence; Cell Line; Gram-Negative Bacterial Infections; Interleukin-6; Lipid A; Lipopolysaccharides; Macrophages; Mice; Molecular Sequence Data; Nitric Oxide; Nitric Oxide Synthase; RNA, Messenger; Tumor Necrosis Factor-alpha | 1994 |
Search for sepsis drugs goes on despite past failures.
Topics: Antibodies, Monoclonal; Bacterial Infections; Bradykinin; Clinical Trials as Topic; Cytokines; Drug Design; Endotoxins; Gram-Negative Bacterial Infections; Humans; Lipid A; Nitric Oxide | 1994 |
Antilipid A monoclonal antibody HA-1A decreases the capacity of bacterial lipopolysaccharide to activate human vascular endothelial cells by an immune adherence mechanism.
Human monoclonal IgM antibody HA-1A, which recognizes the lipid A component of bacterial lipopolysaccharide (LPS), has been shown to reduce mortality in Gram negative septicemia. The vascular endothelial lining of blood vessels, which controls leucocyte traffic and activation, as well as haemostatic balance, may be one of the primary targets of LPS action during sepsis. In earlier studies we have described HA-1A-induced immune adherence of LPS to complement receptors on erythrocytes, and showed that pre-incubation with HA-1A, in the presence of complement and red blood cells, markedly reduced LPS-induced cytokine production from peripheral blood mononuclear cells. In the present study, we measured the effect of immune adherence of LPS in the presence of HA-1A on the responses of cultured endothelial cells, and found that subsequent expression of adhesion molecules such as E-selectin, ICAM-1 and VCAM-1, and secretion of the cytokines interleukin-6 and granulocyte-macrophage colony stimulating factor were markedly reduced. Moreover, the ability of LPS to increase levels of tissue factor procoagulant activity on endothelial cells was markedly diminished by LPS immune adherence to HA-1A. This decrease in endothelial activation in response to LPS following immune adherence to HA-1A may play a significant role in the protective effect of HA-1A in vivo during the course of Gram negative sepsis. Topics: Antibodies, Monoclonal; Bacterial Adhesion; Cell Adhesion; Cell Adhesion Molecules; Cells, Cultured; E-Selectin; Endothelium, Vascular; Gram-Negative Bacterial Infections; Humans; Lipid A; Lipopolysaccharides; Thromboplastin | 1993 |
[The use of monoclonal antibodies to lipid A for the correction of the hemodynamic disorders in endotoxemia].
Endotoxemia induced by gram-negative bacteria leads to endotoxic shock pathogenetically stemming from the integral component of the bacterial wall--lipid A. The study made to define the ability of lipid A monoclonal antibodies to correct hemodynamic disturbances due to endotoxemia in dog experiments showed the efficacy of the antibodies administration. ReLPS isolated from Salmonella Minnesota was used as an antigen. Administration of the complex monoclonal antibodies-endotoxin caused no hemodynamic impairment. Topics: Animals; Antibodies, Monoclonal; Dogs; Drug Evaluation, Preclinical; Gram-Negative Bacterial Infections; Hemodynamics; Immunization; Immunoglobulin M; Lipid A; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Salmonella; Shock, Septic | 1993 |
Diphosphoryl lipid A from Rhodopseudomonas sphaeroides induces tolerance to endotoxic shock in the rat.
To examine the hemodynamic effects of diphosphoryl lipid A from Rhodopseudomonas sphaeroides and to examine the ability of this substance to induce tolerance to endotoxic shock.. Randomized, prospective, controlled study comparing the hemodynamic actions of R. sphaeroides diphosphoryl lipid A to those effects of lipopolysaccharide form Salmonella minnesota, followed by a prospective, randomized, controlled study comparing pretreatment with R. sphaeroides diphosphoryl lipid A and phosphate-buffered saline in the induction of tolerance to endotoxic shock.. Laboratory of the Section of Critical Care Medicine at a University Hospital.. Male Sprague-Dawley rats.. Eight rats were randomized to receive intravenous R. sphaeroides diphosphoryl lipid A, 0.5 mg/100 g body weight or S. minnesota lipopolysaccharide, 0.5 mg/100 g body weight. Ten rats were then randomized to receive R. sphaeroides diphosphoryl lipid A, 0.5 mg/100 g body weight, or phosphate-buffered saline intravenously 48 hrs before receiving S. minnesota lipopolysaccharide, 5 mg/100 g body weight, by intravenous infusion.. Cardiac index was significantly decreased from baseline in rats treated with lipopolysaccharide; there was no significant change in the R. sphaeroides diphosphoryl lipid A group. Peak circulating tumor necrosis factor (TNF) concentrations in the lipopolysaccharide-treated rats were higher than in R. sphaeroides diphosphoryl lipid A-treated rats (3.1 +/- 1.0 vs. 1.5 +/- 0.4 ng/mL). R. sphaeroides diphosphoryl lipid A significantly attenuated lipopolysaccharide-induced changes in mean arterial pressure and cardiac index. At baseline, there was no significant difference in serum TNF concentrations between rats pretreated with R. sphaeroides diphosphoryl lipid A and those rats pretreated with phosphate-buffered saline. TNF levels peaked at 1 hr post-lipopolysaccharide infusion at 4.3 +/- 0.6 ng/mL in the phosphate-buffered saline group and at 2.0 +/- 0.5 ng/mL in the R. sphaeroides diphosphoryl lipid A group (p < .02). Four of five rats pretreated with R. sphaeroides diphosphoryl lipid A survived endotoxic shock, whereas none of the phosphate-buffered saline-pretreated rats survived (p = .05).. These observations are consistent with previous reports of the limited toxic effects of R. sphaeroides diphosphoryl lipid A and suggest that this molecule retains the ability to induce tolerance to endotoxic shock. Topics: Animals; Disease Models, Animal; Drug Evaluation, Preclinical; Gram-Negative Bacterial Infections; Hemodynamics; Infusions, Intravenous; Lipid A; Lipopolysaccharides; Male; Random Allocation; Rats; Rats, Sprague-Dawley; Rhodobacter sphaeroides; Salmonella; Shock, Septic; Survival Rate; Time Factors; Tumor Necrosis Factor-alpha | 1993 |
Endotoxin concentration in neutropenic patients with suspected gram-negative sepsis: correlation with clinical outcome and determination of anti-endotoxin core antibodies during therapy with polyclonal immunoglobulin M-enriched immunoglobulins.
We carried out a study in patients with severe neutropenia from hematologic malignancy and suspected gram-negative sepsis to evaluate the clinical significance of endotoxin concentrations in plasma before and during a therapeutic intervention with a human polyclonal immunoglobulin M (IgM)-enriched immunoglobulin preparation (Pentaglobin; Biotest, Dreieich, Germany). Twenty-one patients with acute leukemia or non-Hodgkin's lymphoma entered the study upon the development of clinical signs of gram-negative sepsis and received the IgM-enriched immunoglobulin preparation every 6 h for 3 days (total dose, 1.3 liter with 7.8 g of IgM, 7.8 g of IgA, and 49.4 g of IgG), in addition to standardized antibiotic treatment. Concentrations of endotoxin and IgM and IgG antibodies against lipid A and Re lipopolysaccharide (LPS) in plasma were determined by a modified chromogenic Limulus amebocyte lysate test and semiquantitative enzyme linked immunosorbent assay, respectively, before each immunoglobulin infusion and during the following 25 days. Seventeen patients were endotoxin positive; in five of these patients, gram-negative infection was confirmed by microbiologic findings. Prior to therapy, endotoxemia correlated significantly with the occurrence of fever, and a quantitative correlation between the endotoxin concentration and body temperature was found during the individual course of infection in 8 of the 17 patients. Overall mortality from endotoxin-positive sepsis was 41% (7 of 17) and 64% (7 of 11) in patients with symptoms of septic shock. Nonsurvivors had significantly higher maximum concentration of endotoxin in plasma compared with those of survivors at the first study day (median of 126 versus 34 pg/ml; P < 0.05) and during the whole septic episode (median of 126 versus 61 pg/ml; P < 0.05). In survivors, immunoglobulin therapy resulted in a significant decrease in endotoxin levels in plasma within the initial 18-h treatment period, from a pretreatment median value of 28 pg/ml to a value of 8 pg/ml (P< 0.05). In the seven patients who died from uncontrollable infection, no effect of therapy on endotoxin levels in plasma was observed. IgM and IgG antibodies against lipid A and Re LPS increased significantly under immunoglobulin treatment, with significant correlations between antibodies against lipid A and Re LPS. These data strongly suggest a prognostic significance of the endotoxin levels in plasma and a potential effect of treatment with a polyclonal IgM-en Topics: Adult; Aged; Antibodies, Anti-Idiotypic; Endotoxins; Enzyme-Linked Immunosorbent Assay; Female; Gram-Negative Bacterial Infections; Humans; Immunoglobulin A; Immunoglobulin M; Kinetics; Lipid A; Male; Middle Aged; Neutropenia | 1992 |