linoleic-acid has been researched along with Malnutrition* in 3 studies
1 review(s) available for linoleic-acid and Malnutrition
Article | Year |
---|---|
Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life.
Scores of animal studies demonstrate that seed oils replete with linoleic acid and very low in linolenic acid fed as the exclusive source of fat through pregnancy and lactation result in visual, cognitive, and behavioural deficits in the offspring. Commodity peanut, sunflower, and safflower oils fed to mother rats, guinea pigs, rhesus monkeys, and baboons induce predictable changes in tissue polyunsaturated fatty acid composition that are abnormal in free-living land mammals as well as changes in neurotransmitter levels, catecholamines, and signalling compounds compared with animals with a supply of ω3 polyunsaturated fatty acid. These diets consistently induce functional deficits in electroretinograms, reflex responses, reward or avoidance induced learning, maze learning, behaviour, and motor development compared with ω3 replete groups. Boosting neural tissue docosahexaenoic acid (DHA) by feeding preformed DHA enhances visual and cognitive function. Though no human randomized controlled trials on minimal ω3 requirements in pregnancy and lactation have been conducted, the weight of animal evidence compellingly shows that randomizing pregnant or lactating humans to diets that include high linoleate oils as the sole source of fat would be frankly unethical because they would result in suboptimal child development. Increasing use of commodity ω3-deficient oils in developing countries, many in the name of heart health, will limit brain development of the next generation and can be easily corrected at minimal expense by substituting high oleic acid versions of these same oils, in many cases blended with small amounts of α-linolenic acid oils like flax or perilla oil. Inclusion of DHA in these diets is likely to further enhance visual and neural development. Topics: alpha-Linolenic Acid; Animal Nutritional Physiological Phenomena; Animals; Animals, Newborn; Developing Countries; Docosahexaenoic Acids; Fatty Acids, Unsaturated; Female; Fish Oils; Humans; Lactation; Linoleic Acid; Male; Malnutrition; Plant Oils; Pregnancy | 2011 |
1 trial(s) available for linoleic-acid and Malnutrition
Article | Year |
---|---|
Low linoleic acid foods with added DHA given to Malawian children with severe acute malnutrition improve cognition: a randomized, triple-blinded, controlled clinical trial.
There is concern that the PUFA composition of ready-to-use therapeutic food (RUTF) for the treatment of severe acute malnutrition (SAM) is suboptimal for neurocognitive recovery.. We tested the hypothesis that RUTF made with reduced amounts of linoleic acid, achieved using high-oleic (HO) peanuts without added DHA (HO-RUTF) or with added DHA (DHA-HO-RUTF), improves cognition when compared with standard RUTF (S-RUTF).. A triple-blind, randomized, controlled clinical feeding trial was conducted among children with uncomplicated SAM in Malawi with 3 types of RUTF: DHA-HO-RUTF, HO-RUTF, and S-RUTF. The primary outcomes, measured in a subset of subjects, were the Malawi Developmental Assessment Tool (MDAT) global z-score and a modified Willatts problem-solving assessment (PSA) intention score for 3 standardized problems, measured 6 mo and immediately after completing RUTF therapy, respectively. MDAT domain z-scores, plasma fatty acid content, anthropometry, and eye tracking were secondary outcomes. Comparisons were made between the novel PUFA RUTFs and S-RUTF.. Among the 2565 SAM children enrolled, mean global MDAT z-scores were -0.69 ± 1.19 and -0.88 ± 1.27 for children receiving DHA-HO-RUTF and S-RUTF, respectively (difference 0.19, 95% CI: 0.01, 0.38). Children receiving DHA-HO-RUTF had higher gross motor and social domain z-scores than those receiving S-RUTF. The PSA problem 3 scores did not differ by dietary group (OR: 0.92, 95% CI: 0.67, 1.26 for DHA-HO-RUTF). After 4 wk of treatment, plasma phospholipid EPA and α-linolenic acid were greater in children consuming DHA-HO-RUTF or HO-RUTF when compared with S-RUTF (for all 4 comparisons P values < 0.001), but only plasma DHA was greater in DHA-HO-RUTF than S-RUTF (P < 0.001).. Treatment of uncomplicated SAM with DHA-HO-RUTF resulted in an improved MDAT score, conferring a cognitive benefit 6 mo after completing diet therapy. This treatment should be explored in operational settings. This trial was registered at clinicaltrials.gov as NCT03094247. Topics: Child; Cognition; Fast Foods; Humans; Infant; Linoleic Acid; Male; Malnutrition; Prostate-Specific Antigen; Severe Acute Malnutrition | 2022 |
1 other study(ies) available for linoleic-acid and Malnutrition
Article | Year |
---|---|
Dietary modulation of body composition and insulin sensitivity during catch-up growth in rats: effects of oils rich in n-6 or n-3 PUFA.
The present study investigates whether excessive fat accumulation and hyperinsulinaemia during catch-up growth on high-fat diets are altered by n-6 and n-3 PUFA derived from oils rich in either linoleic acid (LA), α-linolenic acid (ALA), arachidonic acid (AA) or DHA. It has been shown that, compared with food-restricted rats refed a high-fat (lard) diet low in PUFA, those refed isoenergetically on diets enriched in LA or ALA, independently of the n-6:n-3 ratio, show improved insulin sensitivity, lower fat mass and higher lean mass, the magnitude of which is related to the proportion of total PUFA precursors (LA+ALA) consumed. These relationships are best fitted by quadratic regression models (r2>0·8, P < 0·001), with threshold values for an impact on body composition corresponding to PUFA precursors contributing 25-30 % of energy intake. Isoenergetic refeeding on high-fat diets enriched in AA or DHA also led to improved body composition, with increases in lean mass as predicted by the quadratic model for PUFA precursors, but decreases in fat mass, which are disproportionately greater than predicted values; insulin sensitivity, however, was not improved. These findings pertaining to the impact of dietary intake of PUFA precursors (LA and ALA) and their elongated-desaturated products (AA and DHA), on body composition and insulin sensitivity, provide important insights into the search for diets aimed at counteracting the pathophysiological consequences of catch-up growth. In particular, diets enriched in essential fatty acids (LA and/or ALA) markedly improve insulin sensitivity and composition of weight regained, independently of the n-6:n-3 fatty acid ratio. Topics: alpha-Linolenic Acid; Analysis of Variance; Animals; Arachidonic Acids; Body Composition; Docosahexaenoic Acids; Food, Fortified; Glucose Tolerance Test; Insulin Resistance; Linoleic Acid; Malnutrition; Rats; Rats, Sprague-Dawley; Refeeding Syndrome; Regression Analysis | 2011 |