linoleic-acid and Aortic-Diseases

linoleic-acid has been researched along with Aortic-Diseases* in 3 studies

Other Studies

3 other study(ies) available for linoleic-acid and Aortic-Diseases

ArticleYear
Decreased aortic early atherosclerosis and associated risk factors in hypercholesterolemic hamsters fed a high- or mid-oleic acid oil compared to a high-linoleic acid oil.
    The Journal of nutritional biochemistry, 2004, Volume: 15, Issue:9

    Currently, diets higher in polyunsaturated fat are believed to lower blood cholesterol concentrations, and thus reduce atherosclerosis, greater than diets containing high amounts of saturated or possibly even monounsaturated fat. The present study was designed to investigate the effect of diets containing mid- or high-linoleic oil versus the typical high-linoleic sunflower oil on LDL oxidation and the development of early atherosclerosis in a hypercholesterolemic hamster model. Animals were fed a hypercholesterolemic diet containing 10% mid-oleic sunflower oil, high-oleic olive oil, or high-linoleic sunflower oil (wt/wt) plus 0.4% cholesterol (wt/wt) for 10 weeks. After 10 weeks of dietary treatment, only the animals fed the mid-oleic sunflower oil had significant reductions in plasma LDL-C levels (-17%) compared to the high-linoleic sunflower oil group. The high-oleic olive oil-fed hamsters had significantly higher plasma triglyceride levels (+41%) compared to the high-linoleic sunflower oil-fed hamsters. The tocopherol levels in plasma LDL were significantly higher in hamsters fed the mid-oleic sunflower oil (+77%) compared to hamsters fed either the high-linoleic sunflower or high-oleic olive oil. Measurements of LDL oxidation parameters, indicated that hamsters fed the mid-oleic sunflower oil and high-oleic olive oil diets had significantly longer lag phase (+66% and +145%, respectively) and significantly lower propagation rates (-26% and -44%, respectively) and conjugated dienes formed (-17% and -25%, respectively) compared to the hamsters fed the high-linoleic sunflower oil. Relative to the high-linoleic sunflower oil, aortic cholesterol ester was reduced by -14% and -34% in the mid-oleic sunflower oil and high-oleic olive oil groups, respectively, with the latter reaching statistical significance. Although there were no significant associations between plasma lipids and lipoprotein cholesterol with aortic total cholesterol and cholesterol esters for any of the groups, the lag phase of conjugated diene formation was inversely associated with both aortic total and esterified cholesterol in the high-oleic olive oil-fed hamsters (r = -0.69, P < 0.05). The present study suggests that mid-oleic sunflower oil reduces risk factors such as lipoprotein cholesterol and oxidative stress associated with early atherosclerosis greater than the typical high-linoleic sunflower oil in hypercholesterolemic hamsters. The high-oleic olive oil not only significantly red

    Topics: alpha-Tocopherol; Animals; Aorta; Aortic Diseases; Arteriosclerosis; Cholesterol Esters; Cholesterol, HDL; Cholesterol, LDL; Cricetinae; Hypercholesterolemia; Linoleic Acid; Lipids; Lipoproteins, LDL; Mesocricetus; Oleic Acid; Olive Oil; Plant Oils; Risk Factors; Sunflower Oil

2004
Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits.
    Circulation research, 2001, Nov-23, Volume: 89, Issue:11

    Maternal hypercholesterolemia during pregnancy is associated with enhanced fatty streak formation in human fetuses and faster progression of atherosclerosis during childhood even under normocholesterolemic conditions. A causal role of maternal hypercholesterolemia in lesion formation during fetal development has previously been established in rabbits. The same experimental model is now used to establish that maternal hypercholesterolemia or ensuing pathogenic events in fetal arteries enhance atherogenesis later in life. Five groups of rabbit mothers were fed chow, cholesterol-enriched chow, or cholesterol-enriched chow plus 1000 IU vitamin E, 3% cholestyramine, or both during pregnancy. Offspring of all groups (n=136) were fed a mildly hypercholesterolemic diet for up to a year and had similar cholesterol levels. Aortic lesion sizes and lipid peroxidation products in plasma and lesions in offspring were determined at birth, 6 months, or 12 months. Lesion progression in offspring of hypercholesterolemic mothers was greater than in all other groups. At each time point, offspring of hypercholesterolemic mothers had 1.5- to 3-fold larger lesions than offspring of normocholesterolemic mothers (P<0.01), with the greatest absolute differences at 12 months. Maternal treatment reduced lesions by 19% to 53%, compared with offspring of untreated hypercholesterolemic mothers (P<0.01), with the greatest effect in the vitamin E groups. At 12 months, lesions in offspring of all vitamin E and cholestyramine-treated mothers were similar to those of normocholesterolemic mothers. Lipid peroxidation end-products in lesions and plasma showed analogous differences between groups as lesions (P<0.01). Thus, pathogenic programming in utero increases the susceptibility to atherogenic risk factors later in life and maternal intervention with cholesterol-lowering drugs or antioxidants reduce postnatal lipid peroxidation and atherosclerosis in their offspring.

    Topics: Animals; Anticholesteremic Agents; Antioxidants; Aorta; Aortic Diseases; Arteriosclerosis; Cholestyramine Resin; Disease Progression; Female; Hypercholesterolemia; Linoleic Acid; Lipid Peroxidation; Malondialdehyde; Pregnancy; Rabbits; Vitamin E

2001
Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters.
    Artery, 1997, Volume: 22, Issue:5

    Conjugated linoleic acid is a collective term used to designate a mixture of positional and geometric isomers of linoleic acid in which the double bonds are conjugated. Unlike linoleic acid, there is a paucity of information regarding the effect of dietary conjugated linoleic acid on plasma lipoproteins and aortic atherosclerosis. Therefore, fifty hamsters were divided into five groups of ten and fed 0 (Control), 0.06 (LOW), 0.11 (MEDIUM), and 1.1 (HIGH) en% conjugated linoleic acid or 1.1 en% linoleic acid. Blood samples were taken at 4, 8 and 11 weeks for plasma lipid analyses and for plasma tocopherol assay at sacrifice. Animals fed the conjugated linoleic acid-containing diets collectively had significantly reduced levels of plasma total cholesterol, non-high density lipoprotein cholesterol, (combined very low and low density lipoprotein) and triglycerides with no effect on high density lipoprotein cholesterol, as compared to CONTROLs. Linoleic acid-fed animals relative to CONTROLs also had reduced plasma total cholesterol, non-high density lipoprotein cholesterol and triglycerides, but only the latter was statistically significant. Compared to the CONTROL group, plasma tocopherol/total cholesterol ratios determined from plasma pools for the LOW, MEDIUM and HIGH conjugated linoleic acid and linoleic acid groups were increased by 48%, 48%, 86% and 29%, respectively, suggesting a tocopherol-sparing effect, at least for the conjugated linoleic acid treatment. Morphometric analysis of aortas revealed less early atherosclerosis in the conjugated linoleic acid and linoleic acid-fed hamsters compared to the CONTROL group.

    Topics: Animals; Aortic Diseases; Arteriosclerosis; Cricetinae; Dietary Fats, Unsaturated; Hypercholesterolemia; Linoleic Acid; Linoleic Acids; Lipids; Lipoproteins; Male; Time Factors; Vitamin E

1997