linezolid has been researched along with Pseudomonas-Infections* in 2 studies
1 review(s) available for linezolid and Pseudomonas-Infections
Article | Year |
---|---|
From lead optimization to NDA approval for a new antimicrobial: Use of pre-clinical effect models and pharmacokinetic/pharmacodynamic mathematical modeling.
Because of our current crisis of resistance, particularly in nosocomial pathogens, the discovery and development of new antimicrobial agents has become a societal imperative. Changes in regulatory pathways by the Food and Drug Administration and the European Medicines Agency place great emphasis on the use of preclinical models coupled with pharmacokinetic/pharmacodynamic analysis to rapidly and safely move new molecular entities with activity against multi-resistant pathogens through the approval process and into the treatment of patients. In this manuscript, the use of the murine pneumonia system and the Hollow Fiber Infection Model is displayed and the way in which the mathematical analysis of the data arising from these models contributes to the robust choice of dose and schedule for Phase 3 clinical trials is shown. These data and their proper analysis act to de-risk the conduct of Phase 3 trials for anti-infective agents. These trials are the most expensive part of drug development. Further, given the seriousness of the infections treated, they represent the riskiest element for patients. Consequently, these preclinical model systems and their proper analysis have become a central part of accelerated anti-infective development. A final contention of this manuscript is that it is possible to embed these models and in particular, the Hollow Fiber Infection Model earlier in the drug discovery/development process. Examples of 'dynamic driver switching' and the impact of this phenomenon on clinical trial outcome are provided. Identifying dynamic drivers early in drug discovery may lead to improved decision making in the lead optimization process, resulting in the best molecules transitioning to clinical development. Topics: Animals; Anti-Bacterial Agents; Drug Approval; Drug Discovery; Humans; Microbial Sensitivity Tests; Models, Biological; Mycobacterium tuberculosis; Pseudomonas Infections | 2016 |
1 other study(ies) available for linezolid and Pseudomonas-Infections
Article | Year |
---|---|
In vivo activity of ceftobiprole in murine skin infections due to Staphylococcus aureus and Pseudomonas aeruginosa.
Ceftobiprole, a broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA) (P. Hebeisen et al., Antimicrob. Agents Chemother. 45:825-836, 2001), was evaluated in a subcutaneous skin infection model with Staphylococcus aureus Smith OC 4172 (methicillin-susceptible S. aureus [MSSA]), S. aureus OC 8525 (MRSA), Pseudomonas aeruginosa OC 4351 (having an inducible AmpC beta-lactamase), and P. aeruginosa OC 4354 (overproducing AmpC beta-lactamase). In the MSSA and MRSA infection models, ceftobiprole, administered as the prodrug ceftobiprole medocaril, was more effective in reducing CFU/g skin (P < 0.001) than were cefazolin, vancomycin, or linezolid based on the dose-response profiles. Skin lesion volumes in MSSA-infected animals treated with ceftobiprole were 19 to 29% lower than those for cefazolin-, vancomycin-, or linezolid-treated animals (P < 0.001). In MRSA infections, lesion size in ceftobiprole-treated mice was 34% less than that with cefazolin or linezolid treatment (P < 0.001). Against P. aeruginosa, ceftobiprole at similar doses was as effective as meropenem-cilastatin in reductions of CFU/g skin, despite 8- and 32-fold-lower MICs for meropenem; both treatments were more effective than was cefepime (P < 0.001) against the inducible and overproducing AmpC beta-lactamase strains of P. aeruginosa. Ceftobiprole was similar to meropenem-cilastatin and 47 to 54% more effective than cefepime (P < 0.01) in reducing the size of the lesion caused by either strain of P. aeruginosa in this study. These studies indicate that ceftobiprole is effective in reducing both bacterial load and lesion volume associated with infections due to MSSA, MRSA, and P. aeruginosa in this murine model of skin and soft tissue infection. Topics: Animals; Anti-Bacterial Agents; Area Under Curve; Bacterial Proteins; beta-Lactamases; Cephalosporins; Colony Count, Microbial; Dose-Response Relationship, Drug; Female; Gram-Negative Bacteria; Gram-Positive Bacteria; Half-Life; Immunocompromised Host; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Hairless; Microbial Sensitivity Tests; Pseudomonas aeruginosa; Pseudomonas Infections; Skin Diseases, Infectious; Staphylococcal Infections; Staphylococcus aureus | 2010 |