linezolid has been researched along with Pneumonia--Staphylococcal* in 2 studies
2 other study(ies) available for linezolid and Pneumonia--Staphylococcal
Article | Year |
---|---|
Synthesis and antibacterial activities of new piperidine substituted (5R)-[1,2,3]triazolylmethyl and (5R)-[(4-F-[1,2,3]triazolyl)methyl] oxazolidinones.
A novel series of 5(R)-[1,2,3]triazolylmethyl and (5R)-[(4-F-[1,2,3]triazolyl)methyl]oxazolidinones having various piperidine group were synthesized and evaluated antibacterial activity against clinically isolated resistant strains of Gram-positive and Gram-negative bacteria. The compound 12a having exo-cyanoethylidene group in the 4-position of piperidine ring was found to be two to threefold more potent than the linezolid against penicillin-resistant Staphylococcus pneumonia and Staphylococcus agalactiae, and also exhibited reduced MAO-B inhibitory activity. Topics: Anti-Bacterial Agents; Microbial Sensitivity Tests; Oxazolidinones; Piperidines; Pneumonia, Staphylococcal; Staphylococcus; Structure-Activity Relationship | 2013 |
Pharmacodynamic characterization of ceftobiprole in experimental pneumonia caused by phenotypically diverse Staphylococcus aureus strains.
Ceftobiprole (BPR) is an investigational cephalosporin with activity against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains. The pharmacodynamic (PD) profile of BPR against S. aureus strains with a variety of susceptibility phenotypes in an immunocompromised murine pneumonia model was characterized. The BPR MICs of the test isolates ranged from 0.25 to 2 mug/ml. Pharmacokinetic (PK) studies were conducted with infected neutropenic BALB/c mice; and the BPR concentrations were measured in plasma, epithelial lining fluid (ELF), and lung tissue. PD studies with these mice were undertaken with eight S. aureus isolates (two methicillin-susceptible S. aureus strains, three hospital-acquired MRSA strains, and three community-acquired MRSA strains). Subcutaneous BPR doses of 2 to 125 mg/kg of body weight/day were administered, and the change in the number of log(10) CFU/ml in lungs was evaluated after 24 h of therapy. The PD profile was characterized by using the free drug exposures (f) determined from the following parameters: the percentage of time that the concentration was greater than the MIC (T > MIC), the maximum concentration in serum/MIC, and the area under the concentration-time curve/MIC. The BPR PK parameters were linear over the dose range studied in plasma, and the ELF concentrations ranged from 60 to 94% of the free plasma concentration. fT > MIC was the parameter that best correlated with efficacy against a diverse array of S. aureus isolates in this murine pneumonia model. The 80% effective dose (ED(80)), ED(50), and stasis exposures appeared to be similar among the isolates studied. BPR exerted maximal antibacterial effects when fT > MIC ranged from 6 to 22%, regardless of the phenotypic profile of resistance to beta-lactam, fluoroquinolone, erythromycin, clindamycin, or tetracycline antibiotics. Topics: Animals; Anti-Bacterial Agents; Cephalosporins; Community-Acquired Infections; Cross Infection; Disease Models, Animal; Drug Resistance, Bacterial; Female; Humans; Methicillin Resistance; Mice; Mice, Inbred BALB C; Phenotype; Pneumonia, Staphylococcal; Staphylococcus aureus | 2008 |