linezolid has been researched along with Endocarditis--Bacterial* in 4 studies
4 other study(ies) available for linezolid and Endocarditis--Bacterial
Article | Year |
---|---|
Ceftobiprole is superior to vancomycin, daptomycin, and linezolid for treatment of experimental endocarditis in rabbits caused by methicillin-resistant Staphylococcus aureus.
Beta lactam agents are the most active drugs for the treatment of streptococci and methicillin-susceptible Staphylococcus aureus endocarditis. However, methicillin-resistant S. aureus (MRSA) is resistant to all beta lactam agents licensed to date, and alternative treatments are limited. Ceftobiprole is a novel broad-spectrum cephalosporin that binds with high affinity to PBP 2a, the penicillin binding protein that mediates the methicillin resistance of staphylococci and is active against MRSA. Ceftobiprole was compared to vancomycin, daptomycin, and linezolid in a rabbit model of MRSA aortic valve endocarditis caused by the homogeneously methicillin-resistant laboratory strain COL. Residual organisms in vegetations were significantly fewer in ceftobiprole-treated rabbits than in any other treatment group (P<0.05 for each comparison). In addition, the numbers of organisms in spleens and in kidneys were significantly lower in ceftobiprole-treated rabbits than in linezolid- and vancomycin-treated animals (P<0.05 for each comparison). Anti-MRSA beta lactam agents such as ceftobiprole may represent a significant therapeutic advance over currently available agents for the treatment of MRSA endocarditis. Topics: Acetamides; Animals; Anti-Bacterial Agents; Cephalosporins; Chromatography, High Pressure Liquid; Daptomycin; Disease Models, Animal; Endocarditis, Bacterial; Linezolid; Methicillin-Resistant Staphylococcus aureus; Oxazolidinones; Rabbits; Random Allocation; Vancomycin | 2010 |
In vivo activity of a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, ceftaroline, against vancomycin-susceptible and -resistant Enterococcus faecalis strains in a rabbit endocarditis model: a comparative study with linezolid and van
We assessed the in vitro and in vivo efficacy of the novel parenteral broad-spectrum cephalosporin ceftaroline against Enterococcus faecalis in time-kill experiments and in a rabbit endocarditis model with simulated human dosing. Ceftaroline was more active than either vancomycin or linezolid against vancomycin-sensitive and -resistant isolates of E. faecalis. Topics: Acetamides; Animals; Anti-Bacterial Agents; Ceftaroline; Cephalosporins; Endocarditis, Bacterial; Enterococcus faecalis; Linezolid; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Oxazolidinones; Rabbits; Vancomycin; Vancomycin Resistance | 2009 |
Single-dose oral amoxicillin or linezolid for prophylaxis of experimental endocarditis due to vancomycin-susceptible and vancomycin-resistant Enterococcus faecalis.
Endocarditis prophylaxis following genitourinary or gastrointestinal procedures targets Enterococcus faecalis. Prophylaxis recommendations advocate oral amoxicillin (2 g in the United States and 3 g in the United Kingdom) in moderate-risk patients and intravenous amoxicillin (2 g) or vancomycin (1 g) plus gentamicin in high-risk patients. While ampicillin-resistant (or amoxicillin-resistant) E. faecalis is still rare, there is a concern that these regimens might fail against vancomycin-resistant and/or aminoglycoside-resistant isolates. The present study tested oral linezolid as an alternative. Rats with catheter-induced aortic vegetations were given prophylaxis simulating human pharmacokinetics of oral amoxicillin (2- to 3-g single dose), oral linezolid (600 mg, single or multiple oral doses every 12 h), or intravenous vancomycin (1-g single dose). Rats were then inoculated with the minimum inoculum infecting 90% of the animals (90% infective dose [ID(90)]) or with 10 times the ID(90) of the vancomycin-susceptible E. faecalis strain JH2-2 or the vancomycin-resistant (VanA phenotype) E. faecalis strain UCN41. Amoxicillin was also tested with two additional vancomycin-susceptible E. faecalis strains, 309 and 1209. Animals were sacrificed 3 days later. All the tested bacteria were susceptible to amoxicillin and gentamicin. Single-dose amoxicillin provided 100% protection against all four isolates at both the ID(90) and 10 times the ID(90). In contrast, linezolid required up to four consecutive doses to provide full protection against the vancomycin-resistant isolate. Vancomycin protected only against the vancomycin-susceptible strain. The high efficacy of single-dose oral amoxicillin suggests that this regimen could be used for prophylaxis in both moderate-risk and high-risk patients without additional aminoglycosides. Linezolid appears to be less reliable, at least against the vancomycin-resistant strain. Topics: Acetamides; Administration, Oral; Amoxicillin; Animals; Anti-Bacterial Agents; Antibiotic Prophylaxis; Endocarditis, Bacterial; Enterococcus faecalis; Female; Linezolid; Microbial Sensitivity Tests; Oxazolidinones; Rats; Rats, Wistar; Vancomycin Resistance | 2007 |
In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model.
Using the rabbit endocarditis model, we compared the activity of a new broad-spectrum cephalosporin, ceftaroline, with those of linezolid and vancomycin against methicillin-resistant Staphylococcus aureus. After a 4-day treatment, ceftaroline exhibited superior bactericidal in vivo activity against resistant S. aureus strains and appeared to be the most effective drug against a heterogeneous glycopeptide-intermediate S. aureus strain. Topics: Acetamides; Animals; Anti-Bacterial Agents; Area Under Curve; Ceftaroline; Cephalosporins; Chromatography, High Pressure Liquid; Colony Count, Microbial; Endocarditis, Bacterial; Immunoenzyme Techniques; Linezolid; Methicillin Resistance; Microbial Sensitivity Tests; Oxazolidinones; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Treatment Outcome; Vancomycin; Vancomycin Resistance | 2007 |