linagliptin has been researched along with Heart-Diseases* in 3 studies
3 other study(ies) available for linagliptin and Heart-Diseases
Article | Year |
---|---|
Linagliptin prevents left ventricular stiffening by reducing titin cleavage and hypophosphorylation.
The metabolic syndrome (MetS) is an escalating problem worldwide, causing left ventricular stiffening, an early characteristic of diastolic dysfunction for which no treatment exists. As diastolic dysfunction and stiffening in MetS patients are associated with increased circulating dipeptidyl peptidase-4 (DPP-4) levels, we investigated whether the clinically approved DPP-4 inhibitor linagliptin reduces left ventricular stiffness in MetS-induced cardiac disease. Sixteen-week-old obese ZSF1 rats, displaying the MetS and left ventricular stiffness, received linagliptin-supplemented or placebo diet for four weeks. Linagliptin significantly reduced obesity, hyperlipidaemia, and hyperglycaemia and improved left ventricular relaxation. This improved relaxation was related to decreased cardiac fibrosis and cardiomyocyte passive stiffness (F Topics: Animals; Connectin; Heart Diseases; Linagliptin; Male; Mice, Obese; Myocardium; Myocytes, Cardiac; Obesity; Phosphorylation; Protein Processing, Post-Translational; Rats | 2021 |
Linagliptin Attenuates the Cardiac Dysfunction Associated With Experimental Sepsis in Mice With Pre-existing Type 2 Diabetes by Inhibiting NF-κB.
The mortality rate of patients who develop sepsis-related cardiac dysfunction is high. Many disease conditions (e.g., diabetes) increase the susceptibility to infections and subsequently sepsis. Activation of the NF-κB pathway plays a crucial role in the pathophysiology of sepsis-associated cardiac dysfunction and diabetic cardiomyopathy. The effect of diabetes on outcomes in patients with sepsis is still highly controversial. We here hypothesized that type 2 diabetes (T2DM) augments the cardiac (organ) dysfunction associated with sepsis, and that inhibition of the NF-κB pathway with linagliptin attenuates the cardiac (organ) dysfunction in mice with T2DM/sepsis. To investigate this, 10-week old male C57BL/6 mice were randomized to receive normal chow or high fat diet (HFD), 60% of calories derived from fat). After 12 weeks, mice were subjected to sham surgery or cecal ligation and puncture (CLP) for 24 h. At 1 hour after surgery, mice were treated with linagliptin (10 mg/kg, i.v.), IKK-16 (1 mg/kg, i.v.), or vehicle (2% DMSO, 3 ml/kg, i.v.). Mice also received analgesia, fluids and antibiotics at 6 and 18 h after surgery. Mice that received HFD showed a significant increase in body weight, impairment in glucose tolerance, reduction in ejection fraction (%EF), and increase in alanine aminotransferase (ALT). Mice on HFD subjected to CLP showed further reduction in %EF, increase in ALT, developed acute kidney dysfunction and lung injury. They also showed significant increase in NF-κB pathway, iNOS expression, and serum inflammatory cytokines compared to sham surgery group. Treatment of HFD-CLP mice with linagliptin or IKK-16 resulted in significant reductions in (i) cardiac, liver, kidney, and lung injury associated with CLP-sepsis, (ii) NF-κB activation and iNOS expression in the heart, and (iii) serum inflammatory cytokine levels compared to HFD-CLP mice treated with vehicle. Our data show that pre-existing type 2 diabetes phenotype worsens the organ dysfunction/injury associated with CLP-sepsis in mice. Most notably, inhibition of NF-κB reduces the organ dysfunction/injury associated with sepsis in mice with pre-existing T2DM. Topics: Animals; Cecum; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Heart Diseases; Humans; Linagliptin; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Piperidines; Pyrrolidines; Sepsis; Signal Transduction | 2018 |
Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway.
Dipeptidyl peptidase 4 inhibitors are used worldwide in the management of diabetes, but their role in the prevention or treatment of cardiovascular disorders has yet to be defined. We found that linagliptin, a DPP-4 inhibitor, suppressed capillary rarefaction in the hearts of mice with dietary obesity. Metabolomic analysis performed with capillary electrophoresis/mass spectrometry (LC-MS/MS) showed that linagliptin promoted favorable metabolic remodeling in cardiac tissue, which was characterized by high levels of citrulline and creatine. DNA microarray analysis revealed that the cardiac tissue level of early growth response protein 1 (EGR-1), which activates angiogenesis, was significantly reduced in untreated mice with dietary obesity, while this decrease was inhibited by administration of linagliptin. Mature fibroblast growth factor 2 (FGF-2) has a putative truncation site for DPP-4 at the NH2-terminal, and LC-MS/MS showed that recombinant DPP-4 protein cleaved the NH2-terminal dipeptides of mature FGF-2. Incubation of cultured neonatal rat cardiomyocytes with FGF-2 increased Egr1 expression, while it was suppressed by recombinant DPP-4 protein. Furthermore, vascular endothelial growth factor-A had a critical role in mediating FGF-2/EGR-1 signaling. In conclusion, pharmacological inhibition of DPP-4 suppressed capillary rarefaction and contributed to favorable remodeling of cardiac metabolism in mice with dietary obesity. Topics: Amino Acid Sequence; Animals; Cells, Cultured; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Early Growth Response Protein 1; Fibroblast Growth Factor 2; Gene Expression Regulation; Heart Diseases; Linagliptin; Male; Mice; Mice, Inbred C57BL; Myocardial Ischemia; Obesity; Rats; Rats, Wistar; Sequence Homology; Systole | 2017 |