linagliptin and Fibrosis

linagliptin has been researched along with Fibrosis* in 14 studies

Other Studies

14 other study(ies) available for linagliptin and Fibrosis

ArticleYear
Linagliptin exacerbates heart failure due to energy deficiency via downregulation of glucose utilization and absorption in a mouse model.
    European journal of pharmacology, 2023, Jun-05, Volume: 948

    Use of dipeptidyl peptidase-4 (DPP4) inhibitor in some clinical trials might have caused heart failure (HF), leading to increased hospitalizations. The aim of the present study was to determine whether linagliptin has any effect on chronic dilated HF, and its underlying mechanisms. Physiologic and pathologic studies were conducted on heart/muscle-specific manganese superoxide dismutase-deficient mice, which exhibited dilated cardiomyopathy, and were randomized to receive a low dose (1 mg/kg, HF-L group) or high dose (10 mg/kg, HF-H group) mixed with food, or normal food (HF group), for 8 weeks. Linagliptin increased mortality and heart/body weight ratio in mice with HF. Cardiac contractility and fibrosis worsened, whereas hepatic glycogen content and individual carbohydrate consumption decreased significantly in the HF-H group, when compared with the HF control group. Therefore, we performed a complementary experiment by supplementing glucose to the mice treated with high-dose linagliptin (HF-HG group). Adequate glucose supplementation reduced heart/body weight ratio and cardiac fibrosis, and improved cardiac contractility, without changing mortality. Following oral administration of

    Topics: Animals; Body Weight; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Down-Regulation; Fibrosis; Glucose; Heart Failure; Hypoglycemic Agents; Linagliptin; Mice

2023
Linagliptin ameliorated cardiac fibrosis and restored cardiomyocyte structure in diabetic mice associated with the suppression of necroptosis.
    Journal of diabetes investigation, 2023, Volume: 14, Issue:7

    Linagliptin is a selective dipeptidyl peptidase (DPP)-4 inhibitor capable of successfully regulating blood glucose levels. The cardiovascular protective effects of several DPP-4 inhibitors have been shown in preclinical studies; however, the detailed influence of DPP-4 inhibitors on diabetic pathological alterations in cardiac tissue has not yet been elucidated.. We combined laboratory-based experiments and bioinformatics techniques to identify suitable candidate targets with significant biological pathways. Mice with streptozotocin-induced insulin deficiency diabetic model were utilized for in vivo experiments. Mice were euthanized at 24 weeks after the induction of diabetes; linagliptin intervention was carried out for 4 weeks before euthanasia. Microarray analysis of heart samples was carried out.. Mice with streptozotocin-induced diabetes, but not control mice, showed cardiac fibrosis with an endothelial-mesenchymal transition program, and myocardial fiber and sarcomere disruption; linagliptin alleviated these diabetes-associated pathological alterations without altering blood glucose levels. Bioinformatics analysis utilizing a microarray dataset identified 10 hub genes that were confirmed to have human disease relevance by Gene Expression Omnibus analysis. Among these hub genes, we focused on the Sox9-necroptosis axis as a therapeutic target in diabetic hearts. Indeed, diabetic mice showed the induction of necroptosis-associated genes and the phosphorylation of RIP3 and mixed lineage kinase domain-like protein.. Linagliptin showed excellent heart protection in mice with streptozotocin-induced diabetes associated with alterations in human disease-relevant hub genes. Further investigation is required to determine why DPP-4 inhibitors do not show similar superior organ-protective effects in the clinical setting.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Fibrosis; Humans; Hypoglycemic Agents; Linagliptin; Mice; Myocytes, Cardiac; Necroptosis; Streptozocin

2023
DPP-4 Inhibitors Attenuate Fibrosis After Glaucoma Filtering Surgery by Suppressing the TGF-β/Smad Signaling Pathway.
    Investigative ophthalmology & visual science, 2023, 07-03, Volume: 64, Issue:10

    This study investigated the effect of dipeptidyl peptidase-4 inhibitors (DPP-4is) on fibrosis after glaucoma filtering surgery with clinical data and an in vitro model that used transforming growth factor-β (TGF-β) to induce human Tenon's fibroblast (HTF) fibrosis.. The medical records of 41 eyes of 35 patients with diabetes with neovascular glaucoma (NVG) who received initial trabeculectomy were retrospectively reviewed. The surgical success rate was compared between cases that received (n = 23) and did not receive (n = 18) DPP-4i treatment for diabetes. The antifibrotic effects of linagliptin (a DPP-4i) were evaluated with quantitative real-time PCR for fibrosis markers (α-smooth muscle actin, collagen Iα, and fibronectin), a scratch assay, and a collagen gel contraction assay of primary cultured HTFs treated with TGF-β1 and linagliptin. Western blotting analysis was performed to evaluate the levels of phosphorylated Smad2 and Smad3 in the presence of linagliptin.. The Kaplan-Meier curve for bleb survival was higher in patients who received DPP-4is (P = 0.017, log-rank test). The in vitro experiments demonstrated that treatment with linagliptin attenuated the elevated levels of fibrosis markers induced by TGF-β1 in HTFs. Linagliptin treatment also prevented the migration and gel contraction of HTFs. Linagliptin inhibited the phosphorylation of Smad2 and Smad3, which is the canonical pathway of TGF-β signaling.. The current study indicates the potential effect of DPP-4is for maintaining bleb function after glaucoma filtering surgery in patients with diabetes with NVG. Our results demonstrate that linagliptin attenuates fibrotic change in HTFs by inhibiting TGF-β/Smad signaling.

    Topics: Cells, Cultured; Collagen; Dipeptidyl-Peptidase IV Inhibitors; Fibroblasts; Fibrosis; Glaucoma; Humans; Linagliptin; Retrospective Studies; Signal Transduction; Trabeculectomy; Transforming Growth Factor beta; Transforming Growth Factor beta1

2023
Suppression of angiotensin II-activated NOX4/NADPH oxidase and mitochondrial dysfunction by preserving glucagon-like peptide-1 attenuates myocardial fibrosis and hypertension.
    European journal of pharmacology, 2022, Jul-15, Volume: 927

    This study aims to investigate whether stabilization of glucagon-like peptide-1 (GLP-1) level reduces angiotensin II (Ang II)-induced cardiac fibrosis and -elevated blood pressure accompanying with inhibition of NADPH oxidase (NOX) expression and preservation of mitochondrial integrity. The study was performed in Sprague-Dawley rat model of Ang II infusion (500 ng/kg/min) using osmotic minipumps for 4 weeks. GLP-1 receptor agonist liraglutide (0.3 mg/kg, injected subcutaneously twice daily) and dipeptidyl peptides-4 inhibitor, linagliptin (8 mg/kg, administered via oral gavage) were selected to preserve GLP-1 level. Blood pressure was measured noninvasively. Heart and aorta were saved for histological analysis. Relative to the animals with Ang II infusion, in the heart, liraglutide and linagliptin comparatively reduced the protein levels of NOX4 and TGFβ1 and expression of monocyte chemoattractant protein 1, and attenuated the proliferation of myofibroblasts (15 ± 4 and 13 ± 3 vs. 42 ± 22/HPF in Ang II group). The number of distorted mitochondria in both groups was significantly reduced (8 ± 4 and 10 ± 6 vs. 27 ± 13/HPF in Ang II group), in company with a significant reduction in cardiac fibrosis. In the aorta, treatment with liraglutide and linagliptin significantly downregulated the expression of NOX4 and intercellular adhesion molecule 1, and enhanced endothelial NOS expression. Aortic wall thickness was reduced comparatively (267 ± 22 and 286 ± 25 vs. 339 ± 40 μm in Ang II group). The area of fibrotic aorta was also reduced (13 ± 6 and 14 ± 5 vs. 38 ± 24 mm

    Topics: Angiotensin II; Animals; Cardiomyopathies; Fibrosis; Glucagon-Like Peptide 1; Hypertension; Linagliptin; Liraglutide; Mitochondria; NADPH Oxidase 4; Rats; Rats, Sprague-Dawley

2022
Combination of APD668, a G protein-coupled receptor 119 agonist with linagliptin, a DPPIV inhibitor, prevents progression of steatohepatitis in a murine model of non-alcoholic steatohepatitis with diabetes.
    Medical molecular morphology, 2019, Volume: 52, Issue:1

    Non-alcoholic steatohepatitis (NASH) is characterized by the presence of hepatic steatosis, oxidative stress, inflammation, and hepatocyte injury with or without fibrosis. In this study, we explored the effect of APD668, a GPR119 agonist alone or in combination with linagliptin, a DPPIV inhibitor, on the progression of steatohepatitis in a murine model of NASH with diabetes. A novel NASH model with diabetes was generated by administration of streptozotocin injection to neonatal C57BL/6 mice (2-3 days old) combined with a high-fat diet feeding from the age of 4 weeks. The plasma biochemical parameters, oxidative stress, inflammation and histopathological changes were assessed. APD668 alone showed reduction in plasma glucose (- 39%, P < 0.05) and triglyceride level (- 26%) whereas a combined treatment of APD668 with linagliptin resulted in a more pronounced reduction in plasma glucose (- 52%, P < 0.001) and triglyceride (- 50%, P < 0.05) in NASH mice. In addition, co-administration of APD668 with linagliptin demonstrated a significant decrease in hepatic triglyceride, NAS score, hepatic TBARS and hepatic TNF-α in NASH mice with diabetes. These findings suggest that GPR119 receptor agonists in combination with DPPIV inhibitors may represent a promising therapeutic strategy for the treatment of NASH.

    Topics: Animals; Diabetes Mellitus, Experimental; Diet, High-Fat; Dipeptidyl-Peptidase IV Inhibitors; Disease Progression; Fibrosis; Inflammation; Linagliptin; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Pyrazoles; Pyrimidines; Receptors, G-Protein-Coupled

2019
A dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, attenuates cardiac dysfunction after myocardial infarction independently of DPP-4.
    Journal of pharmacological sciences, 2019, Volume: 139, Issue:2

    Dipeptidyl peptidase-4 (DPP-4) inhibitors not only improve impaired glucose tolerance in diabetes, but also have pleiotropic extra-pancreatic effects such as preconditioning effect for myocardial ischemia-reperfusion injury. Here, we investigated the anti-remodeling effects of linagliptin, a DPP-4 inhibitor, by use of DPP-4-deficient rats. After the induction of myocardial infarction (MI), Fischer 344 rats with inactivating mutation of DPP-4 were orally administrated with a DPP-4 inhibitor, linagliptin (5 mg kg

    Topics: Animals; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Fibrosis; Linagliptin; Male; Matrix Metalloproteinase 2; Myocardial Infarction; Rats, Inbred F344; Rats, Wistar; Transforming Growth Factor beta1; Ventricular Function, Left

2019
Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice.
    Cardiovascular diabetology, 2017, 05-05, Volume: 16, Issue:1

    Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system.. Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks.. WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration.. Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.

    Topics: Adaptor Proteins, Signal Transducing; Animals; Cardiomyopathies; Cells, Cultured; Diastole; Diet, Western; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Down-Regulation; Female; Fibrosis; Linagliptin; Mice, Inbred C57BL; Myocarditis; Myocardium; NF-kappa B; Nitrosative Stress; Obesity; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Recovery of Function; Signal Transduction; Time Factors; Transcription Factor AP-1; Ventricular Dysfunction, Left; Ventricular Function, Left

2017
The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.
    Kidney international, 2016, Volume: 89, Issue:5

    Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different.

    Topics: Albuminuria; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Benzoates; Biomarkers; Blood Pressure; Chromatography, Liquid; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Fibrosis; Kidney; Linagliptin; Male; Mass Spectrometry; Nephrectomy; Rats, Inbred F344; Rats, Sprague-Dawley; Rats, Transgenic; Renal Insufficiency, Chronic; Renin-Angiotensin System; Signal Transduction; Telmisartan; Time Factors

2016
Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy.
    Kidney international, 2016, Volume: 90, Issue:4

    The role of stromal cell-derived factor-1 (SDF-1) in the pathogenesis of diabetic nephropathy and its modification by dipeptidyl peptidase-4 (DPP-4) inhibition are uncertain. Therefore, we studied this independent of glucagon-like peptide-1 receptor (GLP-1R) signaling using two Akita diabetic mouse models, the diabetic-resistant C57BL/6-Akita and diabetic-prone KK/Ta-Akita. Increased SDF-1 expression was found in glomerular podocytes and distal nephrons in the diabetic-prone mice, but not in kidneys from diabetic-resistant mice. The DPP-4 inhibitor linagliptin, but not the GLP-1R agonist liraglutide, further augmented renal SDF-1 expression in both Glp1r(+/+) and Glp1r(-/-) diabetic-prone mice. Along with upregulation of renal SDF-1 expression, the progression of albuminuria, glomerulosclerosis, periglomerular fibrosis, podocyte loss, and renal oxidative stress was suppressed in linagliptin-treated Glp1r(+/+) diabetic-prone mice. Linagliptin treatment increased urinary sodium excretion and attenuated the increase in glomerular filtration rate which reflects glomerular hypertension and hyperfiltration. In contrast, selective SDF-1 receptor blockade with AMD3100 reduced urinary sodium excretion and aggravated glomerular hypertension in the Glp1r(+/+) diabetic-prone mice. Thus, DPP-4 inhibition, independent of GLP-1R signaling, contributes to protection of the diabetic kidney through SDF-1-dependent antioxidative and antifibrotic effects and amelioration of adverse renal hemodynamics.

    Topics: Albuminuria; Animals; Benzylamines; Chemokine CXCL12; Cyclams; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Female; Fibrosis; Glomerular Filtration Rate; Glucagon-Like Peptide-1 Receptor; Heterocyclic Compounds; Humans; Hypoglycemic Agents; Kidney; Linagliptin; Liraglutide; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Receptors, CXCR4; Up-Regulation

2016
A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice.
    PloS one, 2015, Volume: 10, Issue:3

    Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin) (n = 19) and those untreated (n = 22). Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibitor had no effect on antigen-induced spleen cell proliferation. Administration of the DPP-4 inhibitor remarkably suppressed cardiac fibrosis and reduced inflammatory cytokine gene expression in EAM mice. Thus, the agents present in DPP-4 inhibitors may be useful to treat and/or prevent clinical myocarditis.

    Topics: Animals; Autoimmune Diseases; Cell Proliferation; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Fibrosis; Heart; Heart Function Tests; Inflammation; Linagliptin; Lung; Lymphocytes; Male; Mice; Mice, Inbred BALB C; Myocarditis; Organ Size

2015
Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition.
    Kidney international, 2015, Volume: 88, Issue:3

    Integrin β1 and dipeptidyl peptidase (DPP)-4 play roles in endothelial cell biology. Vascular endothelial growth factor (VEGF)-A inhibits endothelial-to-mesenchymal transition (EndMT) through VEGF-R2, but through VEGF-R1 promotes EndMT by reducing the bioavailability of VEGF-A. Here we tested whether DPP-4-integrin β1 interactions have a role in EndMT in the renal fibrosis of diabetic nephropathy. In streptozotocin-induced fibrotic kidneys in diabetic CD-1 mice, levels of endothelial DPP-4, integrin β1, and phospho-integrin β1 were all higher and associated with plasma cystatin C elevation. The DPP-4 inhibitor linagliptin ameliorated kidney fibrosis, reduced plasma cystatin C levels, and suppressed endothelial levels of DPP-4, integrin β1, and phospho-integrin β1. In cultured endothelial cells, DPP-4 and integrin β1 physically interacted. Suppression of DPP-4 by siRNA was associated with suppression of integrin β1 and vice versa. Knockdown of either integrin β1 or DPP-4 resulted in the silencing of TGF-β2-induced TGF-β receptor heterodimer formation, smad3 phosphorylation, and EndMT. DPP-4 negatively regulated endothelial viability signaling by VEGF-R2 suppression and VEGF-R1 induction in endothelial cells. Thus, DPP-4 and integrin β1 interactions regulate key endothelial cell signal transduction in both physiological and pathological conditions including EndMT. Hence, inhibiting DPP-4 may be a therapeutic target for treating kidney fibrosis in diabetes.

    Topics: Animals; Cell Survival; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Dipeptidyl Peptidase 4; Endothelial Cells; Epithelial-Mesenchymal Transition; Fibrosis; Hypoglycemic Agents; Integrin beta1; Kidney; Linagliptin; Male; Mice; Phosphorylation; Receptors, Transforming Growth Factor beta; Receptors, Vascular Endothelial Growth Factor; RNA Interference; Signal Transduction; Smad3 Protein; Transfection

2015
Preservation of Glucagon-Like Peptide-1 Level Attenuates Angiotensin II-Induced Tissue Fibrosis by Altering AT1/AT 2 Receptor Expression and Angiotensin-Converting Enzyme 2 Activity in Rat Heart.
    Cardiovascular drugs and therapy, 2015, Volume: 29, Issue:3

    The glucagon-like peptide-1 (GLP-1) has been shown to exert cardioprotective effects in animals and patients. This study tests the hypothesis that preservation of GLP-1 by the GLP-1 receptor agonist liraglutide or the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin is associated with a reduction of angiotensin (Ang) II-induced cardiac fibrosis.. Sprague-Dawley rats were subjected to Ang II (500 ng/kg/min) infusion using osmotic minipumps for 4 weeks. Liraglutide (0.3 mg/kg) was subcutaneously injected twice daily or linagliptin (8 mg/kg) was administered via oral gavage daily during Ang II infusion. Relative to the control, liraglutide, but not linagliptin decreased MAP (124 ± 4 vs. 200 ± 7 mmHg in control, p < 0.003). Liraglutide and linagliptin comparatively reduced the protein level of the Ang II AT1 receptor and up-regulated the AT2 receptor as identified by a reduced AT1/AT2 ratio (0.4 ± 0.02 and 0.7 ± 0.01 vs. 1.4 ± 0.2 in control, p < 0.05), coincident with the less locally-expressed AT1 receptor and enhanced AT2 receptor in the myocardium and peri-coronary vessels. Both drugs significantly reduced the populations of macrophages (16 ± 6 and 19 ± 7 vs. 61 ± 29 number/HPF in control, p < 0.05) and α-SMA expressing myofibroblasts (17 ± 7 and 13 ± 4 vs. 66 ± 29 number/HPF in control, p < 0.05), consistent with the reduction in expression of TGFβ1 and phospho-Smad2/3, and up-regulation of Smad7. Furthermore, ACE2 activity (334 ± 43 and 417 ± 51 vs. 288 ± 19 RFU/min/μg protein in control, p < 0.05) and GLP-1 receptor expression were significantly up-regulated. Along with these modulations, the synthesis of collagen I and tissue fibrosis were inhibited as determined by the smaller collagen-rich area and more viable myocardium.. These results demonstrate for the first time that preservation of GLP-1 using liraglutide or linagliptin is effective in inhibiting Ang II-induced cardiac fibrosis, suggesting that these drugs could be selected as an adjunctive therapy to improve clinical outcomes in the fibrosis-derived heart failure patients with or without diabetes.

    Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Collagen; Fibrosis; Gene Expression; Glucagon-Like Peptide 1; Linagliptin; Liraglutide; Male; Myocardium; Peptidyl-Dipeptidase A; Rats; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Smad Proteins; Transforming Growth Factor beta1

2015
Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen.
    Diabetes, 2014, Volume: 63, Issue:6

    Kidney fibrosis is the final common pathway of all progressive chronic kidney diseases, of which diabetic nephropathy is the leading cause. Endothelial-to-mesenchymal transition (EndMT) has emerged as one of the most important origins of matrix-producing fibroblasts. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been introduced into the market as antidiabetes drugs. Here, we found that the DPP-4 inhibitor linagliptin ameliorated kidney fibrosis in diabetic mice without altering the blood glucose levels associated with the inhibition of EndMT and the restoration of microRNA 29s. Streptozotocin-induced diabetic CD-1 mice exhibited kidney fibrosis and strong immunoreactivity for DPP-4 by 24 weeks after the onset of diabetes. At 20 weeks after the onset of diabetes, mice were treated with linagliptin for 4 weeks. Linagliptin-treated diabetic mice exhibited a suppression of DPP-4 activity/protein expression and an amelioration of kidney fibrosis associated with the inhibition of EndMT. The therapeutic effects of linagliptin on diabetic kidneys were associated with the suppression of profibrotic programs, as assessed by mRNA microarray analysis. We found that the induction of DPP-4 observed in diabetic kidneys may be associated with suppressed levels of microRNA 29s in diabetic mice; linagliptin restored microRNA 29s and suppressed DPP-4 protein levels. Using cultured endothelial cells, we found that linagliptin inhibited TGF-β2-induced EndMT, and such anti-EndMT effects of linagliptin were mediated through microRNA 29 induction. These results indicate the possible novel pleiotropic action of linagliptin to restore normal kidney function in diabetic patients with renal impairment.

    Topics: Animals; Blotting, Western; Cell Line, Transformed; Cell Proliferation; Cells, Cultured; Diabetic Nephropathies; Dipeptidyl-Peptidase IV Inhibitors; Down-Regulation; Endothelial Cells; Fibrosis; Gene Expression Regulation; Genetic Pleiotropy; Immunohistochemistry; Linagliptin; Male; Mesenchymal Stem Cells; Mice; Mice, Inbred NOD; MicroRNAs; Purines; Quinazolines; Streptozocin

2014
Effects of telmisartan and linagliptin when used in combination on blood pressure and oxidative stress in rats with 2-kidney-1-clip hypertension.
    Journal of hypertension, 2013, Volume: 31, Issue:11

    To investigate the effects of linagliptin alone and in combination with the angiotensin II receptor blocker (ARB), telmisartan on blood pressure (BP), kidney function, heart morphology and oxidative stress in rats with renovascular hypertension.. Fifty-seven male Wistar rats underwent unilateral surgical stenosis of the renal artery [2-kidney-1-clip (2k1c) method]. Animals were randomly divided into four treatment groups (n = 14-18 per group) receiving: telmisartan (10 mg/kg per day in drinking water), linagliptin (89 ppm in chow), combination (linagliptin 89 ppm + telmisartan 10 mg/kg per day) or placebo. An additional group of 12 rats underwent sham surgery. BP was measured one week after surgery. Hypertensive animals entered a 16-week dosing period. BP was measured 2, 4, 8, 12 and 16 weeks after the initiation of treatment. Blood and urine were tested for assessment of kidney function and oxidative stress 6, 10, 14 and 18 weeks after surgery. Blood and urine sampling and organ harvesting were finally performed.. Renal stenosis caused an increase in mean ± SD systolic BP as compared with the sham group (157.7 ± 29.3 vs. 106.2 ± 20.5 mmHg, respectively; P < 0.001). Telmisartan alone and in combination with linagliptin, normalized SBP (111.1 ± 24.3 mmHg and 100.4 ± 13.9 mmHg, respectively; P < 0.001 vs. placebo). Telmisartan alone and in combination with linagliptin significantly prevented cardiac hypertrophy, measured by heart weight and myocyte diameter. Renal function measured by cystatin C was not affected by 2k1c surgery. Telmisartan significantly increased plasma concentration of cystatin C. 2k1c surgery initiated fibrosis in both kidneys. Telmisartan promoted further fibrotic changes in the clipped kidney, as measured by protein expression of Col1a1 and histology for interstitial fibrosis and glomerulosclerosis. In non-clipped kidneys, telmisartan demonstrated antifibrotic properties, reducing Col1a1 protein expression. Plasma levels of oxidized low-density lipoprotein were higher in the placebo-treated 2k1c rats as compared to sham-operated animals. The increase was abolished by linagliptin alone (P = 0.03 vs. placebo) and in combination with telmisartan (P = 0.02 vs. placebo). Combination therapy also significantly reduced plasma concentration of carbonyl proteins (P = 0.04 vs. placebo).. Inhibition of type 4 dipeptidyl peptidase with linagliptin did not counter BP-lowering effects of ARB in 2k1c rats. Linagliptin reduced lipid and protein oxidation in 2k1c rats, and this effect was BP-independent.

    Topics: Angiotensin Receptor Antagonists; Animals; Benzimidazoles; Benzoates; Blood Pressure; Cardiomegaly; Collagen Type I; Constriction, Pathologic; Cystatin C; Dipeptidyl-Peptidase IV Inhibitors; Drug Therapy, Combination; Fibrosis; Heart; Hypertension, Renovascular; Kidney; Linagliptin; Lipoproteins, LDL; Male; Oxidative Stress; Purines; Quinazolines; Random Allocation; Rats; Rats, Wistar; Surgical Instruments; Telmisartan

2013