linagliptin has been researched along with Cognition-Disorders* in 2 studies
2 other study(ies) available for linagliptin and Cognition-Disorders
Article | Year |
---|---|
Linagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Mitigates Cognitive Deficits and Pathology in the 3xTg-AD Mouse Model of Alzheimer's Disease.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone shown to be active in the treatment of type-2 diabetes (T2D) and has also been shown as efficacious in Alzheimer's disease (AD). Dipeptidyl peptidase-4 (DPP-4), an enzyme that is expressed in numerous cells, rapidly inactivates endogenous GLP-1. Therefore, DPP-4 inhibition is employed as a therapeutic avenue to increase GLP-1 levels in the management of T2D. The effectiveness of DPP-4 inhibitors in the treatment of AD has been reported in various animal models of AD. With this background, the present study was designed to examine the effectiveness of linagliptin, a DPP-4 inhibitor in the 3xTg-AD mouse model of Alzheimer's disease. Nine-month-old 3xTg-AD mice were administered linagliptin orally (5, 10, and 20 mg/kg) for 8 weeks. At the end of the linagliptin treatment, mice were evaluated for cognitive ability on the Morris Water Maze and Y-maze. Following cognitive evaluation, mice were sacrificed to determine the effect of the linagliptin on brain incretin levels, amyloid burden, tau phosphorylation, and neuroinflammation. We confirm that linagliptin treatment for 8 weeks mitigates the cognitive deficits present in 3xTg-AD mice. Moreover, linagliptin also improves brain incretin levels and attenuates amyloid beta, tau phosphorylation as well as neuroinflammation. In conclusion, linagliptin possesses neuroprotective properties that may be attributed to the improvement of incretin levels in the brain. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood Glucose; Cognition Disorders; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Linagliptin; Maze Learning; Mice; Mice, Transgenic; tau Proteins | 2017 |
DPP-4 inhibition with linagliptin ameliorates cognitive impairment and brain atrophy induced by transient cerebral ischemia in type 2 diabetic mice.
It is unclear whether dipeptidylpeptidase-4 (DPP-4) inhibition can counteract the impairment of cognitive function and brain injury caused by transient cerebral ischemia in type 2 diabetes. The present study was undertaken to test our hypothesis that linagliptin, a DPP-4 inhibitor, administration following transient cerebral ischemia can ameliorate cognitive impairment and brain injury in diabetic mice.. db/db mice, a model of obese type 2 diabetes, were subjected to transient cerebral ischemia by 17 min of bilateral common carotid artery occlusion (BCCAO), and were administered (1) vehicle or (2) linagliptin for 8 weeks or 1 week. For the long-term experiment on 8 weeks of linagliptin treatment, cognitive function, and volume and neuronal cell number of hippocampus and cortex were estimated in each group of mice. For the short-term experiment on 1 week of linagliptin treatment, cerebral IgG extravasation, Iba-1 positive cell number (reactive microglia), oxidative stress, and claudin-5 and gp91phox protein levels were measured in each group of mice.. Linagliptin administration almost completely suppressed the circulating DPP-4 activity in db/db mice, but did not significantly reduce blood glucose or ameliorate glucose intolerance in db/db mice. Linagliptin administration following transient cerebral ischemia significantly counteracted cognitive impairment in diabetic mice, as estimated by water maze test and passive avoidance test. Linagliptin administration ameliorated the decrease in cerebral volume and neuronal cell number in hippocampus and cortex of diabetic mice. Linagliptin administration significantly reduced the increase in cerebral IgG extravasation and the increase in reactive microglia caused by transient cerebral ischemia in diabetic mice. Furthermore, linagliptin significantly suppressed the increase in cerebral oxidative stress in transient cerebral ischemia-subjected diabetic mice. Furthermore, linagliptin significantly increased cerebral claudin-5 and significantly decreased gp91phox in diabetic mice subjected to transient cerebral ischemia.. DPP-4 inhibition with linagliptin counteracted cognitive impairment and brain atrophy induced by transient cerebral ischemia in diabetic mice, independently of blood glucose lowering effect. This cerebroprotective effect of linagliptin was associated with the suppression of blood-brain barrier disruption and the attenuation of cerebral oxidative stress. Thus, our present work highlights DPP-4 inhibition as a promising therapeutic strategy for cognitive impairment and cerebral vascular complications in type 2 diabetes. Topics: Animals; Atrophy; Brain; Carotid Artery, Common; Cerebral Cortex; Cognition; Cognition Disorders; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Hippocampus; Immunoglobulin G; Ischemic Attack, Transient; Linagliptin; Mice; Microglia; Organ Size | 2015 |