linagliptin has been researched along with Atrial-Remodeling* in 2 studies
2 other study(ies) available for linagliptin and Atrial-Remodeling
Article | Year |
---|---|
Linagliptin Suppresses Electrical and Structural Remodeling in the Isoproterenol Induced Myocardial Injury Model.
The effect of DPP-4 inhibitor on the electrical and structural remodeling in myocardial injury has not been evaluated. We hypothesized that linagliptin, DPP-4 inhibitor, suppresses myocardial remodeling in the isoproterenol (ISP)-induced myocardial injury model.Sprague-Dawley rats were assigned to 3 groups: 1) sham group, 2) ISP group (subcutaneous ISP injection of 70 mg/kg), and 3) ISP + linagliptin (ISP + Lin) (5 mg/kg/day, p.o.) group. Serum was sampled on day 1 (acute phase) and day 7 (sub-acute phase) to evaluate derivatives of reactive oxidative metabolites (d-ROMs). The electrophysiological study was performed in sub-acute phase for the evaluation of the ventricular effective refractory period (VERP) and monophasic action potential duration (MAPD). The VERP and MAPD were markedly prolonged in the ISP group in comparison with the sham (MAPD20: 14 ± 6 versus 11 ± 3 ms, MAPD90: 57 ± 8 versus 44 ± 7 ms, VERP: 74 ± 22 versus 38 ± 10 ms, P < 0.05). In contrast in the ISP + Lin group, such prolongations were suppressed, and the parameters were shorter than the ISP group (MAPD20: 9 ± 2 ms, MAPD90: 35 ± 6 ms, VERP: 52 ± 13 ms, P < 0.05). ISP treatment induced myocardial injury. The injured area was reduced in the ISP + Lin group in comparison with the ISP group (P < 0.05). Serum d-ROMs level in acute phase was higher in ISP group than the other 2 groups (sham: 214 ± 55 versus ISP: 404 ± 45 versus ISP + Lin: 337 ± 20 U.CARR, P < 0.05).Linagliptin suppressed structural and electrical changes, possibly through the antioxidative effect, in this myocardial injury model. Topics: Animals; Antioxidants; Atrial Remodeling; Cardiotonic Agents; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Electrophysiologic Techniques, Cardiac; Isoproterenol; Linagliptin; Myocardial Infarction; Oxidative Stress; Rats; Rats, Sprague-Dawley; Treatment Outcome; Ventricular Remodeling | 2019 |
Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation.
Dipeptidyl peptidase 4 (DPP-4) inhibitors have recently been reported to exhibit additional cardioprotective effects; however, their effect in atrial remodeling, such as in atrial fibrillation (AF), remains unclear. In this study, the effect of linagliptin on atrial electrical and structural remodeling was evaluated in a canine AF model. Sixteen beagle dogs with 3-week atrial rapid stimulation were divided into the linagliptin group (9 mg/kg/day, n = 8) and pacing control group (n = 8). Three additional dogs without rapid pacing were assigned into non-pacing group, which was used as sham in this study. In the dogs with rapid pacing, the atrial effective refractory period (AERP), conduction velocity (CV), and AF inducibility were evaluated and blood was sampled every week. After the entire protocol, atrial tissue was sampled for histological examinations using HE, Azan, and dihydroethidium (DHE) staining to evaluate any tissue damage or oxidative stress. The pacing control group exhibited a gradual AERP shortening and CV decrease along the time course as previously reported. In the linagliptin group, the AERP shortening was not affected, but the CV decrease was suppressed in comparison to the control group (p < 0.05). The AF inducibility was increased in the control group and suppressed in the linagliptin group (p < 0.05). The control group exhibited tissue fibrosis, the degree of which was suppressed in the linagliptin group. DHE staining exhibited suppression of the reactive oxygen species expression in the linagliptin group in comparison to the pacing control group. Linagliptin, a DPP-4-inhibitor, suppressed the AF inducibility, CV decrease, and overexpression of oxidative stress in the canine AF model. Such suppressive effects of linagliptin on AF in the canine model may possibly be related to the anti-oxidative effect. Topics: Animals; Atrial Fibrillation; Atrial Function, Left; Atrial Remodeling; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Female; Heart Conduction System; Linagliptin; Oxidative Stress | 2018 |