linagliptin has been researched along with Alzheimer-Disease* in 5 studies
5 other study(ies) available for linagliptin and Alzheimer-Disease
Article | Year |
---|---|
Neuroprotective Role of DPP-4 Inhibitor Linagliptin Against Neurodegeneration, Neuronal Insulin Resistance and Neuroinflammation Induced by Intracerebroventricular Streptozotocin in Rat Model of Alzheimer's Disease.
Alzheimer's disease (AD) is an age-related, multifactorial progressive neurodegenerative disorder manifested by cognitive impairment and neuronal death in the brain areas like hippocampus, yet the precise neuropathology of AD is still unclear. Continuous failure of various clinical trial studies demands the utmost need to explore more therapeutic targets against AD. Type 2 Diabetes Mellitus and neuronal insulin resistance due to serine phosphorylation of Insulin Receptor Substrate-1 at 307 exhibits correlation with AD. Dipeptidyl Peptidase-4 inhibitors (DPP-4i) have also indicated therapeutic effects in AD by increasing the level of Glucagon-like peptide-1 in the brain after crossing Blood Brain Barrier. The present study is hypothesized to examine Linagliptin, a DPP-4i in intracerebroventricular streptozotocin induced neurodegeneration, and neuroinflammation and hippocampal insulin resistance in rat model of AD. Following infusion on 1st and 3rd day, animals were treated orally with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) and donepezil (5 mg/kg) as a standard for 8 weeks. Neurobehavioral, biochemical and histopathological analysis was done at the end of treatment. Dose-dependently Linagliptin significantly reversed behavioral alterations done through locomotor activity (LA) and morris water maze (MWM) test. Moreover, Linagliptin augmented hippocampal GLP-1 and Akt-ser473 level and mitigated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level. Histopathological analysis also exhibited neuroprotective and anti-amylodogenic effect in Hematoxylin and eosin and Congo red staining respectively. The findings of our study concludes remarkable dose-dependent therapeutic potential of Linagliptin against neuronal insulin resistance via IRS-1 and AD-related complication. Thus, demonstrates unique molecular mechanism that underlie AD. Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Insulin Resistance; Linagliptin; Neuroinflammatory Diseases; Rats; Streptozocin | 2023 |
Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1-42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer's disease.
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder, accounting over 46 million cases of dementia globally. Evidence supports that Brain Insulin Resistance (BIR) due to serine phosphorylation of Insulin Receptor Substrate-1 (IRS-1) has an association with AD. GLP-1 an incretin hormone, rapidly degraded by Dipeptidyl Peptidase-4 (DPP-4) has also confirmed its efficacious role in AD. Linagliptin, a DPP-4 inhibitor is hypothesized to increase GLP-1 level, which then crosses Blood Brain Barrier (BBB), decreases Amyloid-beta (Aβ) and insulin resistance in hippocampus. Thus, the present study was designed to evaluate Linagliptin in Aβ (1-42) peptides induced rat model of AD. Following 1 week of induction, rats were administered with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) orally for 8 weeks and donepezil (5 mg/kg) as a reference standard. At the end of scheduled treatment neurobehavioral parameters were assessed. After this, rats were sacrificed, hippocampus was isolated from the whole brain for histopathological analysis and biochemical parameters estimation. Linagliptin dose-dependently and significantly reversed motor and cognitive impairment, assessed through locomotor activity (LA) and Morris water maze (MWM) test respectively. Moreover, Linagliptin augmented GLP-1 level and attenuated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level in hippocampus. H&E and Congo red staining also exhibited neuroprotective and anti-amylodogenic effect respectively. Our study findings implies the significant effect of Linagliptin in reversing the behavioural and biochemical deficits by altering Aβ (1-42) and BIR via IRS-1 confirming one of the mechanism underlying the pathophysiology of AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain; Dipeptidyl-Peptidase IV Inhibitors; Insulin Receptor Substrate Proteins; Insulin Resistance; Linagliptin; Male; Nerve Degeneration; Peptide Fragments; Rats; Rats, Wistar | 2021 |
Klotho Ameliorates Cellular Inflammation via Suppression of Cytokine Release and Upregulation of miR-29a in the PBMCs of Diagnosed Alzheimer's Disease Patients.
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by neural inflammation and oxidative stress. In the current study, the protective effects of klotho and linagliptin treatment on human peripheral blood mononuclear cells (PBMCs) of AD patients and healthy controls (HCs) are assessed through measurement of inflammatory cytokines, signaling proteins, and miRNA expression. Sixteen diagnosed AD patients and sixteen HCs were enrolled in the study. Blood samples were obtained and PBMCs were isolated. PBMCs were treated with klotho at different concentrations (0.5, 1, and 2 nM) and linagliptin (50 μM). The concentration of interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), epsilon isoform of protein kinase C (PKCε), phosphorylated cyclic AMP response element binding (pCREB), and Wnt1 were measured by ELISA. The expression of miR-29a and miR-195 was detected by real-time PCR. The results showed that klotho significantly reduced IL-1β, IL-6, and TNF-α levels in both groups of the experiment. Linagliptin also remarkably reduced TNF-α levels in the AD group. Moreover, klotho caused the downregulation of Wnt1 in the PBMCs of both groups and the upregulation of the pCREB in HCs. Meanwhile, klotho induced miR-29a expression in the PBMCs of HCs, while miR-29a expression was induced in the AD group by klotho and linagliptin. The current findings revealed that klotho alleviates inflammation in human PBMCs, probably through the suppression of inflammatory cytokines and the upregulation of miR-29a, and part of its beneficial effect is mediated through appropriate modulation of the Wnt1/pCREB signaling cascade. In addition, linagliptin exerts protective effects by reducing TNF-α and inducing miR-29a expression in PBMCs. Topics: Aged; Aged, 80 and over; Alzheimer Disease; Cells, Cultured; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Cytokines; Dipeptidyl-Peptidase IV Inhibitors; Female; Glucuronidase; Humans; Klotho Proteins; Linagliptin; Male; MicroRNAs; Monocytes; Protein Kinase C-epsilon; Up-Regulation; Wnt1 Protein | 2019 |
Linagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Mitigates Cognitive Deficits and Pathology in the 3xTg-AD Mouse Model of Alzheimer's Disease.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone shown to be active in the treatment of type-2 diabetes (T2D) and has also been shown as efficacious in Alzheimer's disease (AD). Dipeptidyl peptidase-4 (DPP-4), an enzyme that is expressed in numerous cells, rapidly inactivates endogenous GLP-1. Therefore, DPP-4 inhibition is employed as a therapeutic avenue to increase GLP-1 levels in the management of T2D. The effectiveness of DPP-4 inhibitors in the treatment of AD has been reported in various animal models of AD. With this background, the present study was designed to examine the effectiveness of linagliptin, a DPP-4 inhibitor in the 3xTg-AD mouse model of Alzheimer's disease. Nine-month-old 3xTg-AD mice were administered linagliptin orally (5, 10, and 20 mg/kg) for 8 weeks. At the end of the linagliptin treatment, mice were evaluated for cognitive ability on the Morris Water Maze and Y-maze. Following cognitive evaluation, mice were sacrificed to determine the effect of the linagliptin on brain incretin levels, amyloid burden, tau phosphorylation, and neuroinflammation. We confirm that linagliptin treatment for 8 weeks mitigates the cognitive deficits present in 3xTg-AD mice. Moreover, linagliptin also improves brain incretin levels and attenuates amyloid beta, tau phosphorylation as well as neuroinflammation. In conclusion, linagliptin possesses neuroprotective properties that may be attributed to the improvement of incretin levels in the brain. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood Glucose; Cognition Disorders; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Linagliptin; Maze Learning; Mice; Mice, Transgenic; tau Proteins | 2017 |
DPP-4 Inhibitor Linagliptin Attenuates Aβ-induced Cytotoxicity through Activation of AMPK in Neuronal Cells.
It is now clear that insulin signaling has important roles in regulation of neuronal functions in the brain. Dysregulation of brain insulin signaling has been linked to neurodegenerative disease, particularly Alzheimer's disease (AD). In this regard, there is evidence that improvement of neuronal insulin signaling has neuroprotective activity against amyloid β (Aβ)-induced neurotoxicity for patients with AD. Linagliptin is an inhibitor of dipeptidylpeptidase-4 (DPP-4), which improves impaired insulin secretion and insulin downstream signaling in the in peripheral tissues. However, whether the protective effects of linagliptin involved in Aβ-mediated neurotoxicity have not yet been investigated.. In the present study, we evaluated the mechanisms by which linagliptin protects against Aβ-induced impaired insulin signaling and cytotoxicity in cultured SK-N-MC human neuronal cells.. Our results showed that Aβ impairs insulin signaling and causes cell death. However, linagliptin significantly protected against Aβ-induced cytotoxicity, and prevented the activation of glycogen synthase kinase 3β (GSK3β) and tau hyperphosphorylation by restoring insulin downstream signaling. Furthermore, linagliptin alleviated Aβ-induced mitochondrial dysfunction and intracellular ROS generation, which may be due to the activation of 5' AMP-activated protein kinase (AMPK)-Sirt1 signaling. This upregulation of Sirt1 expression was also observed in diabetic patients with AD coadministration of linagliptin.. Taken together, our findings suggest linagliptin can restore the impaired insulin signaling caused by Aβ in neuronal cells, suggesting DPP-4 inhibitors may have therapeutic potential for reducing Aβ-induced impairment of insulin signaling and neurotoxicity in AD pathogenesis. Topics: Aged; Aged, 80 and over; Alzheimer Disease; AMP-Activated Protein Kinases; Amyloid beta-Peptides; Cell Line, Tumor; Cell Survival; Chromones; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Enzyme Inhibitors; Female; Gene Expression Regulation, Neoplastic; Glucagon-Like Peptide 1; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Insulin-Like Growth Factor I; Linagliptin; Male; Membrane Potential, Mitochondrial; Morpholines; Neuroblastoma; Peptide Fragments; Reactive Oxygen Species; RNA, Messenger; Sirtuin 1; Superoxide Dismutase; Superoxide Dismutase-1 | 2015 |