limbrel and Inflammation

limbrel has been researched along with Inflammation* in 3 studies

Reviews

1 review(s) available for limbrel and Inflammation

ArticleYear
Flavocoxid, a nutraceutical approach to blunt inflammatory conditions.
    Mediators of inflammation, 2014, Volume: 2014

    Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions.

    Topics: Acacia; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonate 5-Lipoxygenase; Catechin; Drug Combinations; Humans; Inflammation; Osteoarthritis; Scutellaria baicalensis

2014

Other Studies

2 other study(ies) available for limbrel and Inflammation

ArticleYear
Flavocoxid attenuates airway inflammation in ovalbumin-induced mouse asthma model.
    Chemico-biological interactions, 2018, 08-25, Volume: 292

    Asthma is a common airways inflammatory disease. This study provides evidence on the efficacy of flavocoxid against ovalbumin (OVA)-induced allergic airways inflammation in a mouse model of asthma. Airway inflammation was induced by intrapеritonеal injection of 10 mg ovalbumin (OVA) on day zero and day 7 followed by OVA challenge starting from 14th day to 16th day. Beclomethasone; a standard anti-inflammatory agent was selected as a drug in asthma. Flavocoxid (20 mg/kg, i. p.) was administered on day zero till 16th day followed by OVA challenge. At the end of the study, lung weight index, bronchoalveolar lavage fluid (BALF) content of total and differential WBCs, interleukin-13(IL-13), in addition to lung tissue nitrate/nitrite (NO) and oxidative stress biomarkers were measured. Also, histological and immunohistochemical analysis were conducted. Daily i. p. injection of flavocoxid (20 mg/kg) significantly improved airway inflammation. Inflammatory cells in BALF, malondialdehyde (MDA), NO and IL-13 significantly declined with concomitant increase in superoxide dismutase (SOD) activity. Histopathological examination and immunohistochеmical staining of mast cells were correlated with observed biochemical improvements. Collectively, these results demonstrate that flavocoxid mitigates the allergic airway inflammation induced by ovalbumin through attenuation of IL-13, NO expressions and oxidative stress.

    Topics: Animals; Asthma; Biomarkers; Catechin; Disease Models, Animal; Drug Combinations; Inflammation; Lung; Mice; Ovalbumin; Oxidative Stress

2018
Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis.
    British journal of pharmacology, 2010, Volume: 161, Issue:5

    Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis.. Rats were given CER (80 µg·kg⁻¹ for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg⁻¹ i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B₄ and prostaglandin (PG)E₂ ; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction.. Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B₄ and prostaglandin E₂ levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration.. Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition.

    Topics: Acute Disease; Animals; Arachidonate 5-Lipoxygenase; Catechin; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Disease Models, Animal; Drug Combinations; Gene Expression Regulation; Inflammation; Lipoxygenase Inhibitors; Male; Pancreatitis; Polymerase Chain Reaction; Rats; Rats, Sprague-Dawley

2010