limbrel has been researched along with Disease-Models--Animal* in 4 studies
4 other study(ies) available for limbrel and Disease-Models--Animal
Article | Year |
---|---|
Flavocoxid attenuates airway inflammation in ovalbumin-induced mouse asthma model.
Asthma is a common airways inflammatory disease. This study provides evidence on the efficacy of flavocoxid against ovalbumin (OVA)-induced allergic airways inflammation in a mouse model of asthma. Airway inflammation was induced by intrapеritonеal injection of 10 mg ovalbumin (OVA) on day zero and day 7 followed by OVA challenge starting from 14th day to 16th day. Beclomethasone; a standard anti-inflammatory agent was selected as a drug in asthma. Flavocoxid (20 mg/kg, i. p.) was administered on day zero till 16th day followed by OVA challenge. At the end of the study, lung weight index, bronchoalveolar lavage fluid (BALF) content of total and differential WBCs, interleukin-13(IL-13), in addition to lung tissue nitrate/nitrite (NO) and oxidative stress biomarkers were measured. Also, histological and immunohistochemical analysis were conducted. Daily i. p. injection of flavocoxid (20 mg/kg) significantly improved airway inflammation. Inflammatory cells in BALF, malondialdehyde (MDA), NO and IL-13 significantly declined with concomitant increase in superoxide dismutase (SOD) activity. Histopathological examination and immunohistochеmical staining of mast cells were correlated with observed biochemical improvements. Collectively, these results demonstrate that flavocoxid mitigates the allergic airway inflammation induced by ovalbumin through attenuation of IL-13, NO expressions and oxidative stress. Topics: Animals; Asthma; Biomarkers; Catechin; Disease Models, Animal; Drug Combinations; Inflammation; Lung; Mice; Ovalbumin; Oxidative Stress | 2018 |
Effects of COX1-2/5-LOX blockade in Alzheimer transgenic 3xTg-AD mice.
Alzheimer's disease (AD) is associated with amyloid plaques (Aβ) and hyperphosphorylated tau protein tangles in the brain. We investigated the possible neuroprotective role of flavocoxid, a dual inhibitor of cyclooxygenases-1/2 (COX-1/2) and 5-Lipoxygenase (5-LOX), in triple-transgenic (3xTg-AD) mice.. Mice were 3 months at the beginning of the study.. Animals received once daily for 3-month saline solution or flavocoxid (20 mg/kg/ip).. Morris water maze was used to assess learning and memory. Histology was performed to evidence Aβ plaques and neuronal loss, while inflammatory proteins were determined by western blot analysis.. Saline-treated 3xTg-AD mice showed an impairment in spatial learning and memory (assessed at 6 months of age), and increased expression of inflammatory and apoptotic molecules. Treatment of 3xTg-AD mice with flavocoxid reduced: (1) learning and memory loss; (2) the increased eicosanoid production and the phosphorylation level of amyloid precursor protein (APP-pThr668), Aβ 1-42, p-tau (pThr181), pERK, and the activation of the NLRP3 inflammasome; (3) Aβ plaques; and (4) neuronal loss, compared to saline-treated animals.. Pharmacological blockade of both COX-1/2 and 5-LOX was able to counteract the progression of AD by targeting pathophysiological mechanisms up- and downstream of Aβ and tau. Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Brain; Catechin; Cyclooxygenase Inhibitors; Dinoprostone; Disease Models, Animal; Drug Combinations; Interleukin-1beta; Leukotriene B4; Lipoxygenase Inhibitors; Male; Maze Learning; Memory; Mice, Transgenic; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; tau Proteins | 2017 |
Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis.
Cecal ligation and puncture (CLP) is an inflammatory condition that leads to multisystemic organ failure. Flavocoxid, a dual inhibitor of cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX), has been shown in vitro to possess antiinflammatory activity in lipopolysaccharide (LPS)-stimulated rat macrophages by reducing nuclear factor (NF)-κB activity and COX-2, 5-LOX and inducible nitric oxide synthase (iNOS) expression. The aim of this study was to evaluate the effects of flavocoxid in a murine model of CLP-induced polymicrobial sepsis.. C57BL/6J mice were subjected to CLP or sham operation. In a first set of experiments, an intraperitoneal injection of flavocoxid (20 mg/kg) or vehicle was administered 1 hour after surgery and repeated every 12 hours. Survival rate was monitored every 24 hours throughout 120 hours. Furthermore, additional groups of sham and CLP mice were killed 18 hours after surgical procedures for blood-sample collection and the lung and liver were collected for biomolecular, biochemical and histopathologic studies.. COX-2, 5-LOX, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, extracellular-regulated-kinase 1/2 (ERK), JunN-terminal kinase (JNK), NF-κB, and β-arrestin 2 protein expression were evaluated in lung and liver with Western blot analysis. In addition, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), cytokines, and lipoxin A4 serum content were measured with an enzyme-linked immunosorbent assay (ELISA). Flavocoxid administration improved survival, reduced the expression of NF-κB, COX-2, 5-LOX, TNF-α and IL-6 and increased IL-10 production. Moreover, flavocoxid inhibited the mitogen-activated protein kinases (MAPKs) pathway, preserved β-arrestin 2 expression, reduced blood LTB4, PGE2, TNF-α and IL-6, and increased IL-10 and lipoxin A4 serum levels. The treatment with flavocoxid also protected against the histologic damage induced by CLP and reduced the myeloperoxidase (MPO) activity in the lung and liver.. Flavocoxid protects mice from sepsis, suggesting that this dual inhibitor may represent a promising approach in such a life-threatening condition. Topics: Animals; Arrestins; beta-Arrestin 2; beta-Arrestins; Catechin; Cyclooxygenase 2 Inhibitors; Cytokines; Dinoprostone; Disease Models, Animal; Drug Combinations; Extracellular Signal-Regulated MAP Kinases; Intracellular Signaling Peptides and Proteins; Leukotriene B4; Lipoxins; Lipoxygenase Inhibitors; Liver; Lung; Mice, Inbred C57BL; NF-kappa B; Peroxidase; Sepsis | 2012 |
Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis.
Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis.. Rats were given CER (80 µg·kg⁻¹ for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg⁻¹ i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B₄ and prostaglandin (PG)E₂ ; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction.. Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B₄ and prostaglandin E₂ levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration.. Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. Topics: Acute Disease; Animals; Arachidonate 5-Lipoxygenase; Catechin; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Disease Models, Animal; Drug Combinations; Gene Expression Regulation; Inflammation; Lipoxygenase Inhibitors; Male; Pancreatitis; Polymerase Chain Reaction; Rats; Rats, Sprague-Dawley | 2010 |