likviriton has been researched along with Cough* in 2 studies
2 other study(ies) available for likviriton and Cough
Article | Year |
---|---|
Liquiritin apioside attenuates laryngeal chemoreflex but not mechanoreflex in rat pups.
Liquiritin apioside (LA), a main flavonoid component of licorice, reportedly suppresses cough responses to inhalation of aerosolized capsaicin [CAP; a stimulant to transient receptor potential vanilloid 1 (TRPV1)] in conscious guinea pigs via acting on peripheral nerves. However, the evidence of LA having a direct effect on airway sensory fibers is lacking. Considering the important role laryngeal chemoreceptors and mechanoreceptors play in triggering apnea and cough, we studied whether LA suppressed the apneic responses to stimulation of these receptors via directly acting on the superior laryngeal nerve (SLN). Intralaryngeal delivery of chemical [CAP, HCl, and distilled water (DW)] and mechanical [an air-pulse (AP)] stimulations was applied in anesthetized rat pups to evoke the apnea. These stimuli were repeated after intralaryngeal LA treatment or peri-SLN LA treatment to determine the direct effect of LA on the SLN. Our results showed that all stimuli triggered an immediate apnea. Intralaryngeal LA treatment significantly attenuated the apneic response to chemical but not mechanical stimulations. The same attenuation was observed after peri-SLN LA treatment. Owing that TRPV1 receptors of laryngeal C fibers are responsible for the CAP-triggered apneas, the LA impact on the activity of laryngeal C neurons retrogradely traced by DiI was subsequently studied using a patch-clamp approach. LA pretreatment significantly altered the electrophysiological kinetics of CAP-induced currents in laryngeal C neurons by reducing their amplitudes, increasing the rise times, and prolonging the decay times. In conclusion, our results, for the first time, reveal that LA suppresses the laryngeal chemoreceptor-mediated apnea by directly acting on the SLN (TRPV1 receptors of laryngeal C fibers). Topics: Animals; Apnea; Cough; Female; Flavanones; Glucosides; Laryngeal Nerves; Larynx; Male; Nerve Fibers, Unmyelinated; Neurons; Pregnancy; Rats; Rats, Sprague-Dawley; Reflex; TRPV Cation Channels | 2020 |
Antitussive and expectorant activities of licorice and its major compounds.
Licorice has been used as an antitussive and expectorant herbal medicine for a long history. This work evaluated the activities of 14 major compounds and crude extracts of licorice, using the classical ammonia-induced cough model and phenol red secretion model in mice. Liquiritin apioside (1), liquiritin (2), and liquiritigenin (3) at 50 mg/kg (i.g.) could significantly decrease cough frequency by 30-78% (p < .01). The antitussive effects could be partially antagonized by the pretreatment of methysergide or glibenclamide, but not naloxone. Moreover, compounds 1-3 showed potent expectorant activities after 3 days treatment (p < .05). The water and ethanol extracts of licorice, which contain abundant 1 and 2, could decrease cough frequency at 200 mg/kg by 25-59% (p < .05), and enhance the phenol red secretion (p < .05), while the ethyl acetate extract showed little effect. These results indicate liquiritin apioside and liquiritin are the major antitussive and expectorant compounds of licorice. Their antitussive effects depend on both peripheral and central mechanisms. Topics: Administration, Oral; Ammonia; Animals; Antitussive Agents; Cough; Disease Models, Animal; Dose-Response Relationship, Drug; Expectorants; Glyburide; Glycyrrhiza; Male; Methysergide; Mice; Mice, Inbred ICR; Molecular Structure; Phenolsulfonphthalein; Plant Extracts; Structure-Activity Relationship | 2018 |