ligustilide and Reperfusion-Injury

ligustilide has been researched along with Reperfusion-Injury* in 7 studies

Other Studies

7 other study(ies) available for ligustilide and Reperfusion-Injury

ArticleYear
Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2022, Volume: 101

    Mitophagy plays a critical role in cerebral ischemia/reperfusion by timely removal of dysfunctional mitochondria. In mammals, PINK1/Parkin is the most classic pathway mediating mitophagy. And the activation of PINK1/Parkin mediated mitophagy exerts neuroprotective effects during cerebral ischemia reperfusion injury (CIRI). Ligustilide (LIG) is a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis (Oliv.) diels that exerts neuroprotective activity after cerebral ischemia reperfusion injury (CIRI). However, it still remains unclear whether LIG could attenuates cerebral ischemia reperfusion injury (CIRI) through regulating mitophagy mediated by PINK1/Parkin.. To explore the underlying mechanism of LIG on PINK1/Parkin mediated mitophagy in the hippocampus induced by ischemia reperfusion.. The results show that LIG improved mitochondrial functions by mitophagy enhancement in vivo and vitro to alleviate CIRI. Whereas, mitophagy enhanced by LIG under CIRI is abolished by PINK1 deficiency and midivi-1, a mitochondrial division inhibitor which has been reported to have the function of mitophagy, which could further aggravate the ischemia-induced brain damage, mitochondrial dysfunction and neuronal injury.. LIG could ameliorate the neuronal injury against ischemia stroke by promoting mitophagy via PINK1/Parkin. Targeting PINK1/Parkin mediated mitophagy with LIG treatment might be a promising therapeutic strategy for ischemia stroke.

    Topics: 4-Butyrolactone; Animals; Brain Ischemia; Hippocampus; Infarction, Middle Cerebral Artery; Ischemic Stroke; Mammals; Mitophagy; Protein Kinases; Rats; Reperfusion; Reperfusion Injury; Ubiquitin-Protein Ligases

2022
[Mitophagy mediated by ligustilide relieves OGD/R-induced injury in HT22 cells].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2022, Volume: 47, Issue:7

    Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.

    Topics: 4-Butyrolactone; Apoptosis; Calcium; Glucose; Humans; Mitochondrial Proteins; Mitophagy; Reactive Oxygen Species; Reperfusion Injury

2022
[Effect of ligustilide on oxygen and glucose deprivation/reperfusion-induced mitochondria fission in PC12 cells].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2020, Volume: 45, Issue:16

    This study aimed to investigate the effect and mechanism of ligustilide, the main active ingredient in Ligusticum wallichii, on mitochondria fission after PC12 cell injury induced by oxygen and glucose deprivation/reperfusion(OGD/R). In the experiment, an OGD/R model was established in vitro, and PC12 cells were pre-treated with ligustilide for 3 h, and then the cell viability was detected by CCK-8 method. The effect of different concentrations of ligustilide on the morphology of PC12 cells after OGD/R injury was observed under an inverted microscope. Transmission electron microscopy was used to observe the mitochondrial fission of PC12 cells after OGD/R injury. DCFH-DA immunofluorescence staining method was used to detect intracellular reactive oxygen species(ROS) changes. Changes in mitochondria membrane potential(MMP) were detected by flow cytometry. Hochest 33258 was used to observe the apoptosis of PC12 cells. Western blot was used to detect changes in cytochrome C(Cyt C) content in mitochondria and cytoplasm, and mitochondrial fission-related proteins Drp 1 and Fis 1. All results showed that compared with the model group, ligustilide significantly increased the survival rate of PC12 cells and the number of cells. Further experiments showed that ligustilide inhibited the release of ROS and decline of mitochondrial membrane potential in PC12 cells after OGD/R injury. Moreover, ligustilide reduced the release of Cyt C and promoted the expressions of Drp1 and Fis1 in mitochondrial fission proteins. Verification experiments showed that mitochondrial fission inhibitor mdivi-1 decreased cell survival rate and inhibited fission. The results indicated that ligustilide exerted neuro-protective effects by promoting mitochondrial fission and reducing cell damage. It preliminary proves that the mechanism of ligustilide on ischemic brain injury may be related to the promotion of mitochondrial fission and the maintenance of cell homeostasis.

    Topics: 4-Butyrolactone; Animals; Apoptosis; Cell Survival; Glucose; Mitochondria; Oxygen; PC12 Cells; Rats; Reactive Oxygen Species; Reperfusion Injury

2020
Protective HSP70 Induction by Z-Ligustilide against Oxygen-Glucose Deprivation Injury via Activation of the MAPK Pathway but Not of HSF1.
    Biological & pharmaceutical bulletin, 2015, Volume: 38, Issue:10

    Heat-shock protein 70 (HSP70) is known to function as a protective molecular chaperone that is massively induced in response to misfolded proteins following cerebral ischemia. The objective of this study was to characterize HSP70 induction by Z-ligustilide and explore its potential role in protection against cerebral ischemia-reperfusion injury. Our results demonstrated that the intranasal administration of Z-ligustilide reduced infarct volume and improved neurological function in a rat stroke model. Meanwhile, Z-ligustilide enhanced the cell viability of PC12 cells insulted by oxygen-glucose deprivation-reoxygenation (OGD-Reoxy) and decreased apoptotic and necrotic cell death. Importantly, Z-ligustilide induced HSP70 expression both in vitro and in vivo. Although heat-shock factor 1 (HSF1) nuclear translocation was promoted by Z-ligustilide, HSP70-based heat-shock element (HSE)-binding luciferase activity was not activated, and HSP70 expression responsive to Z-ligustilide was not attenuated by HSE decoy oligonucleotides. However, Z-ligustilide significantly activated the phosphorylation of mitogen-activated protein kinases (MAPKs). Further inhibition of MAPK activity by specific inhibitors attenuated HSP70 induction by Z-ligustilide. Meanwhile, downregulation of HSP70 using KNK437, an HSP70 synthesis inhibitor, or small hairpin RNA (shRNA) significantly attenuated the protection of Z-ligustilide against OGD-Reoxy-induced injury. Moreover, the application of specific inhibitors of MAPKs also achieved similar results. Finally, Z-ligustilide alleviated the accumulation of ubiquitinated proteins induced by OGD-Reoxy, which was inhibited by HSP70-shRNA. Taken together, our results demonstrated that Z-ligustilide may induce protective HSP70 expression via the activation of the MAPK pathway, but not canonical HSF1 transcription. HSP70 plays a key role in the protection of Z-ligustilide against OGD-Reoxy-induced injury.

    Topics: 4-Butyrolactone; Animals; Benzhydryl Compounds; Cell Survival; Glucose; HEK293 Cells; HSP70 Heat-Shock Proteins; Humans; Infarction, Middle Cerebral Artery; Male; MAP Kinase Signaling System; Neuroprotective Agents; Oxygen; PC12 Cells; Pyrrolidinones; Rats; Rats, Sprague-Dawley; Reperfusion Injury; RNA, Small Interfering

2015
Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling.
    Free radical biology & medicine, 2014, Volume: 71

    Blocking TLR4/peroxiredoxin (Prx6) signaling is proposed to be a novel therapeutic strategy for ischemic stroke because extracellular Prx6 released from ischemic cells may act as an endogenous ligand for TLR4 and initiate destructive immune responses in ischemic brain. Our previous studies showed that ligustilide (LIG) exerted antineuroinflammatory and neuroprotective effects against ischemic insult, but the underlying mechanisms remain unclear. This study investigated whether the TLR4/Prx6 pathway is involved in the protective effect of LIG against postischemic neuroinflammation and brain injury induced by transient middle cerebral artery occlusion (MCAO) in rats. Intraperitoneal LIG administration (20 and 40 mg/kg/day) at reperfusion onset after MCAO resulted in a reduction of brain infarct size and improved neurological outcome over 72 h. LIG-induced neuroprotection was accompanied by improvement of neuropathological alterations, including neuron loss, astrocyte and microglia/macrophage activation, neutrophil and T-lymphocyte invasion, and regulation of inflammatory mediators expression. Moreover, LIG significantly inhibited the expression and extracellular release of Prx6 and activation of TLR4 signaling, reflected by decreased TLR4 expression, extracellular signal-regulated kinase 1/2 phosphorylation, and transcriptional activity of NF-κB and signal transducer and activator of transcription 3 in the ischemic brain. Our results demonstrate that LIG may provide an early and direct neuroprotection by inhibiting TLR4/Prx6 signaling and subsequent immunity and neuroinflammation after cerebral ischemia. These findings support the translational potential of blocking TLR4/Prx6 signaling for the treatment of ischemic stroke.

    Topics: 4-Butyrolactone; Animals; Anti-Inflammatory Agents, Non-Steroidal; Astrocytes; Brain Ischemia; Cell Movement; Gene Expression Regulation; Inflammation; Injections, Intraperitoneal; Macrophage Activation; Male; Microglia; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neurons; NF-kappa B; Oxidative Stress; Peroxiredoxin VI; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; STAT3 Transcription Factor; T-Lymphocytes; Toll-Like Receptor 4

2014
Z-ligustilide activates the Nrf2/HO-1 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro.
    Brain research, 2013, Jul-03, Volume: 1520

    Z-ligustilide (LIG), the main lipophilic component of Radix Angelica sinensis, has been shown to protect against brain ischemic damage in rodents by oral and intra-peritoneal treatments. The present study aimed to confirm the therapeutic effect of LIG administered intravenously on 2h middle cerebral artery occlusion (MCAO) and 22 h reperfusion injury in rats since oral administration has low bioavailability, slow absorption and distribution. Moreover, whether LIG activated the NF-E2-related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway was also investigated in vivo and in vitro to further elucidate the precise protective mechanisms. In vivo, rats treated intravenously with LIG immediately after the surgery was finished had less neurological dysfunction and smaller infarct volume than that of the vehicle-treated rats. Additionally, LIG promoted Nrf2 nuclear translocation, and further remarkably increased Nrf2 and HO-1 protein expression. In vitro, LIG induced Nrf2 nuclear translocation and up-regulated HO-1 expression in a time-dependent and concentration-dependent manner. Furthermore, LIG treatment reduced cell death induced by OGD, however, the protective action was abolished while Nrf2/HO-1 expression was knockdown by RNA interference. These results noted that intravenous post-treatment with LIG exhibits noticeable neuroprotective properties against brain damage by ischemia-reperfusion and the ability of LIG to activate Nrf2/HO-1 pathway may be partly responsible for it.

    Topics: 4-Butyrolactone; Animals; Blotting, Western; Brain Ischemia; Cell Line; Disease Models, Animal; Fluorescent Antibody Technique; Heme Oxygenase-1; Humans; Male; Neuroprotective Agents; NF-E2-Related Factor 2; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction

2013
Neuroprotective effect of ligustilide against ischaemia-reperfusion injury via up-regulation of erythropoietin and down-regulation of RTP801.
    British journal of pharmacology, 2011, Volume: 164, Issue:2

    Ligustilide, the main lipophilic component of Danggui, has been reported to protect the brain against ischaemic injury. However, the mechanisms are unknown. Here, we investigated the roles of erythropoietin (EPO) and the stress-induced protein RTP801 in neuroprotection provided by ligustilide against ischaemia-reperfusion (I/R) damage to the brain.. The efficacy of ligustilide against I/R damage was assessed by neurological deficit, infarct volume and cell viability, using the middle cerebral artery occlusion model in rats in vivo and rat cultured neurons in vitro. EPO and RTP801 were analysed by Western blot. Over-expression of RTP801 was achieved by transfection of an expression plasmid.. Ligustilide decreased the neurological deficit score, infarct volume and RTP801 expression and increased EPO transcription in I/R rats, and increased cell viability and EPO and decreased LDH release and RTP801 in I/R neurons. Also, ligustilide increased ERK phosphorylation (p-ERK). The positive effects of ligustilide on p-ERK, cell viability and EPO were blocked by PD98059, but not LY294002 and SB203580. In addition, transfection of SH-SY5Y cells with RTP801 plasmid increased RTP801 and LDH release, while ligustilide inhibited the effects of transfection on RTP801 expression and also increased cell viability.. Ligustilide exerts neuroprotective effects against I/R injury by promoting EPO transcription via an ERK signalling pathway and inhibiting RTP801 expression, This compound could be developed into a therapeutic agent to prevent and treat ischaemic disorders.

    Topics: 4-Butyrolactone; Animals; Cell Line; Chromones; Erythropoietin; Flavonoids; Gene Expression Regulation; Glucose; Imidazoles; L-Lactate Dehydrogenase; Male; Morpholines; Neurons; Oxygen; Plasmids; Pyridines; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Repressor Proteins; Transcription Factors

2011