ligustilide and Fibrosis

ligustilide has been researched along with Fibrosis* in 2 studies

Other Studies

2 other study(ies) available for ligustilide and Fibrosis

ArticleYear
Levistolide A ameliorates fibrosis in chronic kidney disease via modulating multitarget actions in vitro and in vivo.
    Life sciences, 2023, May-01, Volume: 320

    The increasing incidence of chronic kidney disease (CKD) urgently calls for effective nephroprotective agents. Traditional Chinese Medicine Angelica sinensis and its formula are well known for CKD therapy, but the underlying mechanisms and effective substances of reno-protective effects remain unclear. To this end, we isolated eleven ligustilide dimers (1-11) from A. sinensis and examined the molecular mechanism of their nephroprotective effects.. Because of internal RAS playing an important role in CKD, we used renin expression as a target and screened preliminarily for antifibrotic effects of ligustilide dimers (1-11) by constructing a dual luciferase reporter gene in vitro. Furthermore, the reno-protective effects of the ligustilides and their underlying mechanism were investigated in TGF-β1-stimulated HK-2 cells and 5/6 nephrectomy (Nx) mice.. The ligustilide dimers exhibited anti-fibrotic effects by inhibiting human renin (hREN) promoter activity to decrease renin expression and down-regulate the expression of fibrosis-related factors, including α-SMA, collagen I, and fibronectin in vitro. Levistolide A (LA) and angeolide keto ester (AK) were screened out to identify their ability and underlying mechanism for treating CKD. Experimental validation further indicated that LA or AK treatment inhibited the expression of key molecules in RAS, TGF-β1/Smad, and MAPK pathways to downregulate ECM deposition. Furthermore, LA obviously meliorated renal injury in 5/6 Nx mice through ameliorating oxidant stress, inflammation, apoptosis and renal fibrosis.. The experimental results demonstrated that ligustilide dimers were potential nephroprotective agents. LA might be an attractive drug candidate for renin-targeted CKD therapy.

    Topics: Animals; Fibrosis; Humans; Kidney; Mice; Renal Insufficiency, Chronic; Renin; Transforming Growth Factor beta1

2023
Alleviation of glucolipotoxicity-incurred cardiomyocyte dysfunction by Z-ligustilide involves in the suppression of oxidative insult, inflammation and fibrosis.
    Chemistry and physics of lipids, 2021, Volume: 241

    Diabetes mellitus ranks as a major risk cause for disability and death around the world due to its complications, especially diabetic cardiomyopathy (DCM). Glucolipotoxicity is one of the critical causal factors of DCM. Recent finding confirms the beneficial roles of Z-ligustilide in diabetes mellitus. Nevertheless, its efficacy in DCM remains elusive. Here, Z-ligustilide elevated high glucose/high palmitic acid (HG/P)-inhibited cell viability and attenuated HG/P-induced cell apoptosis, caspase-3 activity, pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression. Furthermore, Z-ligustilide alleviated HG/P-evoked oxidative damage by decreasing HG/P-induced elevation in ROS, lactate dehydrogenase (LDH) and malondialdehyde (MDA) leakage, but increasing antioxidant enzyme-superoxide dismutase (SOD) and glutathione (GSH) levels suppressed by HG/P. Concomitantly, Z-ligustilide attenuated HG/P-induced cardiomyocyte fibrosis by increasing MMP-14 expression and diminishing HG/P-enhanced fibrotic protein expression, including collagen I, collagen II and TGF-β. Mechanistically, Z-ligustilide offset the adverse effects of HG/P on the activation of the AMPK/GSK-3β/Nrf2 pathway. Importantly, blocking the AMPK signaling overturned the protective efficacy of Z-ligustilide against HG/P-induced cardiomyocyte oxidative damage, inflammation and fibrosis. Together, these findings highlight that Z-ligustilide may alleviate glucolipotoxicity-induced cardiomyocyte dysfunction by regulating cell oxidative injury, inflammation and fibrosis via the AMPK/GSK-3β/Nrf2 pathway. Consequently, Z-ligustilide may represent a promising therapeutic agent against DCM by restoring cardiomyocyte dysfunction.

    Topics: 4-Butyrolactone; Animals; Apoptosis; Cell Survival; Cells, Cultured; Fibrosis; Inflammation; Molecular Structure; Myocytes, Cardiac; Oxidation-Reduction; Rats

2021