lignans and Weight-Loss

lignans has been researched along with Weight-Loss* in 5 studies

Other Studies

5 other study(ies) available for lignans and Weight-Loss

ArticleYear
Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage.
    Life sciences, 2018, Mar-01, Volume: 196

    Magnolol, the main and active ingredient of the Magnolia officinalis, has been widely used in traditional prescription to the human disorders. Magnolol has been proved to have several pharmacological properties including anti-bacterial, anti-oxidant and anti-inflammatory activities. However, the effects of magnolol on ulcerative colitis (UC) have not been reported. The aim of this study was to investigate the protective effects and mechanisms of magnolol on dextran sulphate sodium (DSS)-induced colitis in mice. The results showed that magnolol significantly alleviated DSS-induced body weight loss, disease activities index (DAI), colon length shortening and colonic pathological damage. In addition, magnolol restrained the expression of TNF-α, IL-1β and IL-12 via the regulation of nuclear factor-κB (NF-κB) and Peroxisome proliferator-activated receptor-γ (PPAR-γ) pathways. Magnolol also enhanced the expression of ZO-1 and occludin in DSS-induced mice colonic tissues. These results showed that magnolol played protective effects on DSS-induced colitis and may be an alternative therapeutic reagent for colitis treatment.

    Topics: Animals; Biphenyl Compounds; Cecum; Colitis, Ulcerative; Colon; Cytokines; Dextran Sulfate; Gastrointestinal Agents; Inflammation; Inflammation Mediators; Intestinal Mucosa; Lignans; Male; Mice; Mice, Inbred C57BL; Occludin; PPAR gamma; Weight Loss

2018
Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.
    Journal of cellular biochemistry, 2016, Volume: 117, Issue:9

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.

    Topics: 3T3-L1 Cells; Adipocytes; Adipogenesis; AMP-Activated Protein Kinases; Animals; Dietary Fats; Enzyme Activation; Furans; Humans; Lignans; Male; Mesenchymal Stem Cells; Mice; Obesity; Weight Loss

2016
Therapeutic effects of standardized Vitex negundo seeds extract on complete Freund's adjuvant induced arthritis in rats.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2014, May-15, Volume: 21, Issue:6

    The seeds of Vitex negundo L. (Verbenaceae) have been commonly used as a folk remedy for the treatment of rheumatism and joint inflammation in Traditional Chinese Medicine. This study aimed to evaluate the anti-arthritic activity of the extract of V. negundo seeds (EVNS) using Freund's complete adjuvant (CFA) induced arthritis (AA) in rat model. As a result, EVNS, with abundant phenylnaphthalene-type lignans, significantly inhibited the paw edema, decreased the arthritis score and spleen index, and reversed the weight loss of CFA-injected rats. Histopathological studies showed a marked decrease of synovial inflammatory infiltration and synovial lining hyperplasia in the joints of EVNS-treated animals. The remarkable decrement of serum inflammatory factors (TNF-α, IL-1β and IL-6) were observed in EVNS-treated rats, whereas, IL-10, an anti-inflammatory cytokine, was found to be significantly increased by EVNS. The expressions of COX-2 and 5-LOX in PBMC were also inhibited by administration of EVNS. Our results demonstrated that V. negundo seeds possessed potential therapeutic effect on adjuvant induced arthritis in rats by decreasing the levels of TNF-α, IL-1β and IL-6 and increasing that of IL-10 in serum as well as down-regulating the levels of COX-2 and 5-LOX, and therefore may be an effective cure for the treatment of human rheumatoid arthritis.

    Topics: Animals; Anti-Inflammatory Agents; Antirheumatic Agents; Arthritis, Experimental; Arthritis, Rheumatoid; Cyclooxygenase 2; Down-Regulation; Edema; Freund's Adjuvant; Inflammation; Inflammation Mediators; Interleukins; Joints; Leukocytes, Mononuclear; Lignans; Lipoxygenases; Male; Naphthalenes; Phytotherapy; Plant Extracts; Rats, Wistar; Seeds; Synovial Membrane; Tumor Necrosis Factor-alpha; Vitex; Weight Loss

2014
Radioprotective role in lung of the flaxseed lignan complex enriched in the phenolic secoisolariciresinol diglucoside (SDG).
    Radiation research, 2012, Volume: 178, Issue:6

    While dietary wholegrain Flaxseed (FS) has potent anti-inflammatory, anti-fibrotic and antioxidant properties in murine models of acute and chronic lung injury, the main bioactive ingredient that contributes to these protective effects remains unknown. This study evaluated the lignan complex of FS (FLC) enriched in secoisolariciresinol diglucoside with respect to lung radioprotective and tumor radiosensitizing efficacy using a mouse model of thoracic radiation-induced pneumonopathy. C57/Bl6 mice were fed 0% FS, 10% FS, 10% FLC or 20% FLC for 3 weeks, then irradiated with a single fraction (13.5 Gy) of X-ray radiation treatment (XRT). Mouse survival was monitored for 4 months after irradiation and inflammatory lung parameters were evaluated in bronchoalveolar lavage (BAL) fluid. Gene and protein levels of protective antioxidant and phase II enzymes were evaluated in lung tissue using qPCR and protein levels were verified by immunoblotting. Prolonged administration of the FLC diet was well tolerated and was not associated with any toxicity. Importantly, comparable to the whole grain 10% FS diet, irradiated mice fed 10% and 20% FLC diets displayed improved survival. Improved hemodynamic measurements were also recorded in irradiated mice fed 10% FS or 10% FLC diet compared to irradiated 0% FS fed mice. Flaxseed lignan complex diet also attenuated polymorphonuclear infiltration and overall lung inflammation to levels comparable to those in nonirradiated mice. Flaxseed lignan complex, similarly to FS, up-regulated gene expression as well as protein levels of protective antioxidant enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Dietary FLC induced radiosensitizing effects in our murine model of metastatic lung cancer. Importantly, protection of normal tissue does not thwart tumor cell death by radiation treatment. The dietary lignan complex of FS, mainly consisting of the phenolic secoisolariciresinol, is protective against radiation pneumonopathy in vivo while not hindering the tumoricidal effects of radiotherapy.

    Topics: Animals; Antioxidants; Butylene Glycols; Dietary Carbohydrates; Eating; Female; Flax; Glucosides; Inflammation; Lignans; Lung; Mice; Mice, Inbred C57BL; Phenols; Radiation Pneumonitis; Radiation-Protective Agents; Survival Analysis; Thorax; Weight Loss

2012
Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice.
    BMC cancer, 2011, Jun-24, Volume: 11

    Flaxseed (FS) is a dietary supplement known for its antioxidant and anti-inflammatory properties. Radiation exposure of lung tissues occurs either when given therapeutically to treat intrathoracic malignancies or incidentally, such as in the case of exposure from inhaled radioisotopes released after the detonation of a radiological dispersion devise (RDD). Such exposure is associated with pulmonary inflammation, oxidative tissue damage and irreversible lung fibrosis. We previously reported that dietary FS prevents pneumonopathy in a rodent model of thoracic X-ray radiation therapy (XRT). However, flaxseed's therapeutic usefulness in mitigating radiation effects post-exposure has never been evaluated.. We evaluated the effects of a 10%FS or isocaloric control diet given to mice (C57/BL6) in 2 separate experiments (n = 15-25 mice/group) on 0, 2, 4, 6 weeks post a single dose 13.5 Gy thoracic XRT and compared it to an established radiation-protective diet given preventively, starting at 3 weeks prior to XRT. Lungs were evaluated four months post-XRT for blood oxygenation levels, inflammation and fibrosis.. Irradiated mice fed a 0%FS diet had a 4-month survival rate of 40% as compared to 70-88% survival in irradiated FS-fed mouse groups. Additionally, all irradiated FS-fed mice had decreased fibrosis compared to those fed 0%FS. Lung OH-Proline content ranged from 96.5 ± 7.1 to 110.2 ± 7.7 μg/ml (Mean ± SEM) in all irradiated FS-fed mouse groups, as compared to 138 ± 10.8 μg/ml for mice on 0%FS. Concomitantly, bronchoalveolar lavage (BAL) protein and weight loss associated with radiation cachexia was significantly decreased in all FS-fed groups. Inflammatory cell influx to lungs also decreased significantly except when FS diet was delayed by 4 and 6 weeks post XRT. All FS-fed mice (irradiated or not), maintained a higher blood oxygenation level as compared to mice on 0%FS. Similarly, multiplex cytokine analysis in the BAL fluid revealed a significant decrease of specific inflammatory cytokines in FS-fed mice.. Dietary FS given post-XRT mitigates radiation effects by decreasing pulmonary fibrosis, inflammation, cytokine secretion and lung damage while enhancing mouse survival. Dietary supplementation of FS may be a useful adjuvant treatment mitigating adverse effects of radiation in individuals exposed to inhaled radioisotopes or incidental radiation.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Bronchoalveolar Lavage Fluid; Cachexia; Cytokines; Diet; Drug Evaluation, Preclinical; Female; Flax; Lignans; Lung; Mice; Mice, Inbred C57BL; Oxidative Stress; Oxygen; Phytotherapy; Plant Preparations; Pulmonary Fibrosis; Radiation Pneumonitis; Radiation-Protective Agents; Radiotherapy; Random Allocation; Seeds; Weight Loss

2011