lignans has been researched along with Ureteral-Obstruction* in 5 studies
5 other study(ies) available for lignans and Ureteral-Obstruction
Article | Year |
---|---|
Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis.
Topics: Acetylation; Animals; Biphenyl Compounds; Down-Regulation; Epithelial Cells; Fibrosis; Gene Ontology; Humans; Kidney Tubules; Lignans; Male; Mice, Inbred C57BL; Mitochondrial Proteins; Peptide Fragments; Pyruvate Dehydrogenase Complex; Renal Insufficiency, Chronic; RNA, Messenger; Sirtuin 3; Transforming Growth Factor beta1; Up-Regulation; Ureteral Obstruction | 2021 |
Schisandrin B attenuates renal fibrosis via miR-30e-mediated inhibition of EMT.
Tubulointerstitial fibrosis (TIF) is the main pathologic feature of end-stage renal disease. Epithelial-mesenchymal transition (EMT) of proximal tubular cells (PTCs) is one of the most significant features of TIF. MicroRNAs play critical roles during EMT in TIF. However, whether miRNAs can be used as therapeutic targets in TIF therapy remains undetermined. We found that miR-30e, a member of the miR-30 family, is deregulated in TGF-β1-induced PTCs, TIF mice and human fibrotic kidney tissues. Moreover, transcription factors that induce EMT, such as snail, slug, and Zeb2, were direct targets of miR-30e. Using a cell-based miR-30e promoter luciferase reporter system, Schisandrin B (Sch B) was selected for the enhancement of miR-30e transcriptional activity. Our results indicate that Sch B can decrease the expression of snail, slug, and Zeb2, thereby attenuating the EMT of PTCs during TIF by upregulating miR-30e, both in vivo and in vitro. This study shows that miR-30e can serve as a therapeutic target in the treatment of patients with TIF and that Sch B may potentially be used in therapy against renal fibrosis. Topics: Actins; Cells, Cultured; Cyclooctanes; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Kidney; Lignans; MicroRNAs; Polycyclic Compounds; Snail Family Transcription Factors; Transforming Growth Factor beta1; Ureteral Obstruction; Zinc Finger E-box Binding Homeobox 2 | 2019 |
Arctigenin suppresses renal interstitial fibrosis in a rat model of obstructive nephropathy.
Renal tubulointerstitial fibrosis (TIF) is commonly the final result of a variety of progressive injuries and leads to end-stage renal disease. There are few therapeutic agents currently available for retarding the development of renal TIF.. The aim of the present study is to evaluate the role of arctigenin (ATG), a lignan component derived from dried burdock (Arctium lappa L.) fruits, in protecting the kidney against injury by unilateral ureteral obstruction (UUO) in rats.. Rats were subjected to UUO and then administered with vehicle, ATG (1 and 3mg/kg/d), or losartan (20mg/kg/d) for 11 consecutive days. The renoprotective effects of ATG were evaluated by histological examination and multiple biochemical assays.. Our results suggest that ATG significantly protected the kidney from injury by reducing tubular dilatation, epithelial atrophy, collagen deposition, and tubulointerstitial compartment expansion. ATG administration dramatically decreased macrophage (CD68-positive cell) infiltration. Meanwhile, ATG down-regulated the mRNA levels of pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ), in the obstructed kidneys. This was associated with decreased activation of nuclear factor κB (NF-κB). ATG attenuated UUO-induced oxidative stress by increasing the activity of renal manganese superoxide dismutase (SOD2), leading to reduced levels of lipid peroxidation. Furthermore, ATG inhibited the epithelial-mesenchymal transition (EMT) of renal tubules by reducing the abundance of transforming growth factor-β1 (TGF-β1) and its type I receptor, suppressing Smad2/3 phosphorylation and nuclear translocation, and up-regulating Smad7 expression. Notably, the efficacy of ATG in renal protection was comparable or even superior to losartan.. ATG could protect the kidney from UUO-induced injury and fibrogenesis by suppressing inflammation, oxidative stress, and tubular EMT, thus supporting the potential role of ATG in renal fibrosis treatment. Topics: Animals; Chemokine CCL2; Disease Models, Animal; Epithelial-Mesenchymal Transition; Fibrosis; Furans; Kidney; Kidney Diseases; Lignans; Lipid Peroxidation; Male; NF-kappa B; Oxidative Stress; Rats, Sprague-Dawley; Superoxide Dismutase; Tumor Necrosis Factor-alpha; Ureteral Obstruction | 2017 |
Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro.
Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. The present study investigated, in vivo and in vitro, the anti-fibrotic and anti-inflammatory effects, particularly on the epithelial to mesenchymal transition of renal tubular cells, exerted by honokiol, a phytochemical used in traditional medicine, and mechanisms underlying these effects.. Anti-fibrotic effects in vivo were assayed in a rat model of renal fibrosis [the unilateral ureteral obstruction (UUO) model]. A rat tubular epithelial cell line (NRK-52E) was stimulated by transforming growth factor-β1 (TGF-β1) and treated with honokiol to explore possible mechanisms of these anti-fibrotic effects. Gene or protein expression was analysed by Northern or Western blotting. Transcriptional regulation was investigated using luciferase activity driven by a connective tissue growth factor (CTGF) promoter.. Honokiol slowed development of renal fibrosis both in vivo and in vitro. Honokiol treatment attenuated tubulointerstitial fibrosis and expression of pro-fibrotic factors in the UUO model. Honokiol also decreased expression of the mRNA for the chemokine CCL2 and for the intracellular adhesion molecule-1, as well as accumulation of type I (α1) collagen and fibronectin in UUO kidneys. Phosphorylation of Smad-2/3 induced by TGF-β1 and CTGF luciferase activity in renal tubular cells were also inhibited by honokiol.. Honokiol suppressed expression of pro-fibrotic and pro-inflammatory factors and of extracellular matrix proteins. Honokiol may become a therapeutic agent to prevent renal fibrosis. Topics: Actins; Animals; Biphenyl Compounds; Cell Line; Chemokine CCL2; Connective Tissue Growth Factor; Extracellular Matrix Proteins; Fibrosis; Genes, Reporter; Intercellular Adhesion Molecule-1; Kidney; Kidney Tubules; Lignans; Luciferases; Male; Phosphorylation; Rats; Rats, Wistar; RNA, Messenger; Signal Transduction; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta1; Ureteral Obstruction | 2011 |
Differential effect of platelet-activating factor (PAF) receptor antagonists on peptide and PAF-stimulated prostaglandin release in unilateral ureteral obstruction.
Unilateral ureteral obstruction (UUO) results in increased renal resistance as well as in exaggerated prostaglandin (PG) release from the obstructed hydronephrotic kidney (HNK). We have reported previously that platelet-activating factor (PAF) dose-dependently stimulates the release of PGs from both the HNK and unobstructed contralateral kidney (CLK), with CLK release being 10% that of the HNK. In the present report, we studied the interaction of PAF with its receptor by examining the effects of PAF-receptor antagonists on the release of PGs from the isolated perfused rabbit HNK and CLK stimulated by PAF; angiotensin II (AII), and bradykinin (BK) were also used as agonists. In the HNK, kadsurenone (3 microM) inhibited PAF-stimulated PGE2 and thromboxane B2 (TxB2) release by 28.2 and 62.5% respectively. CV-3988 (20 microM) and triazolam (5 microM) also preferentially diminished PAF-stimulated TxB2 release. In addition, all three drugs significantly diminished BK- and AII-stimulated TxB2 release, while CV-3988 was the only antagonist to affect peptide-stimulated PGE2 release. While effective against agonist-stimulated PG synthesis, these drugs had no direct effect on arachidonic acid metabolism to PGs. Furthermore, in the CLK, CV-3988 had no effect on BK- or AII-stimulated PGE2 release, whereas it totally inhibited PAF-stimulated release of PGE2. These results show that PAF-receptor antagonists in the HNK preferentially inhibit TxB2 release whether stimulated by PAF, AII or BK; in the CLK only PAF-stimulated PG release is affected. This biochemical difference may be of physiological significance and explain some of the functional differences between the HNK and CLK. Therefore, PAF may be an important mediator of some of the biochemical and functional changes associated with UUO. Topics: Angiotensin II; Animals; Benzofurans; Dinoprostone; Kidney; Lignans; Male; Peptides; Platelet Activating Factor; Platelet Membrane Glycoproteins; Prostaglandins; Prostaglandins E; Rabbits; Receptors, Cell Surface; Receptors, G-Protein-Coupled; Thromboxane B2; Triazolam; Ureteral Obstruction | 1988 |