lignans has been researched along with Orthomyxoviridae-Infections* in 5 studies
5 other study(ies) available for lignans and Orthomyxoviridae-Infections
Article | Year |
---|---|
(+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection.
Eucommia ulmoides Oliver (Du-Zhong) is an ancient Chinese herbal remedy used for the treatment of various diseases. To date, the effects of its constituent lignans on influenza viruses remain to be elucidated. In the present study, a lignan glycoside was isolated and purified from Eucommia ulmoides Oliver. Its structures were identified via extensive spectroscopic analysis, and its antiviral and anti‑inflammatory activities, specifically against influenza viruses, were determined via a cytopathic effect (CPE) assay, plaque‑reduction assays, a progeny virus yield reduction assay, reverse transcription‑quantitative polymerase chain reaction analysis and a Luminex assay. Additionally, western blot analysis was performed to investigate the underlying mechanisms of its effects against influenza viruses. The chemical and spectroscopic methods determined the structure of lignan glycoside to be (+)‑pinoresinol‑O‑β‑D‑glucopyranoside. The CPE assay showed that (+)‑pinoresinol‑O‑β‑D‑glucopyranoside exerted inhibitory activities with 50% inhibition concentration values of 408.81±5.24 and 176.24±4.41 µg/ml against the influenza A/PR/8/34 (H1N1) and A/Guangzhou/GIRD07/09 (H1N1) strains, respectively. Its antiviral properties were confirmed by plaque reduction and progeny virus yield reduction assays. Additional mechanistic analyses indicated that the anti‑H1N1 virus‑induced effects of (+)‑pinoresinol‑O-β‑D-glucopyranoside were likely due to inactivation of the nuclear factor‑κB, p38 mitogen‑activated protein kinase and AKT signaling pathways. Furthermore, (+)‑pinoresinol‑O‑β‑D‑glucopyranoside exhibited pronounced inhibitory effects on the expression of influenza H1N1 virus‑induced pro‑inflammatory mediators, including tumor necrosis factor‑α, interleukin (IL)‑6, IL‑8 and monocyte chemoattractant protein 1. The data obtained suggest that (+)‑pinoresinol‑O‑β‑D-glucopyranoside may be a candidate drug for treating influenza H1N1 virus infection. Topics: A549 Cells; Animals; Anti-Inflammatory Agents; Antiviral Agents; Cell Line; Cell Line, Tumor; Dogs; Eucommiaceae; Furans; Glycosides; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Lignans; Madin Darby Canine Kidney Cells; Orthomyxoviridae Infections; Plant Extracts; Signal Transduction | 2019 |
Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection.
Influenza virus infections are a major public health concern worldwide. Conventional treatments against the disease are designed to target viral proteins. However, the emergence of viral variants carrying drug-resistant mutations can outpace the development of pathogen-targeting antivirals. Diphyllin and bafilomycin are potent vacuolar ATPase (V-ATPase) inhibitors previously shown to have broad-spectrum antiviral activity. However, their poor water solubility and potential off-target effect limit their clinical application.. In this study, we report that nanoparticle encapsulation of diphyllin and bafilomycin improves the drugs' anti-influenza applicability.. Using PEG-PLGA diblock copolymers, sub-200 nm diphyllin and bafilomycin nanoparticles were prepared, with encapsulation efficiency of 42% and 100%, respectively. The drug-loaded nanoparticles have sustained drug release kinetics beyond 72 hours and facilitate intracellular drug delivery to two different influenza virus-permissive cell lines. As compared to free drugs, the nanoparticulate V-ATPase inhibitors exhibited lower cytotoxicity and greater. These results demonstrate the potential of the nanoparticulate V-ATPase inhibitors for host-targeted treatment against influenza. Topics: Animals; Antiviral Agents; Benzodioxoles; Cell Line; Dogs; Drug Liberation; Enzyme Inhibitors; Humans; Influenza, Human; Inhibitory Concentration 50; Kinetics; Lignans; Macrolides; Mice; Nanoparticles; Orthomyxoviridae; Orthomyxoviridae Infections; Vacuolar Proton-Translocating ATPases; Viral Proteins; Virus Replication | 2018 |
Effect of sesamin against cytokine production from influenza type A H1N1-induced peripheral blood mononuclear cells: computational and experimental studies.
In 2009, swine flu (H1N1) had spread significantly to levels that threatened pandemic influenza. There have been many treatments that have arisen for patients since the WHO first reported the disease. Although some progress in controlling influenza has taken place during the last few years, the disease is not yet under control. The development of new and less expensive anti-influenza drugs is still needed. Here, we show that sesamin from the seeds of the Thai medicinal plant Sesamum indicum has anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) induced by 2009 influenza virus type A H1N1. In this study, the combinatorial screening method combined with the computational approach was applied to investigate the new molecular binding structures of sesamin against the 2009 influenza virus type A H1N1 (p09N1) crystallized structure. Experimental methods were applied to propose the mechanisms of sesamin against cytokine production from H1N1-induced human PBMC model. The molecular dynamics simulation of sesamin binding with the p09N1 crystallized structure showed new molecular binding structures at ARG118, ILE222, ARG224, and TYR406, and it has been proposed that sesamin could potentially be used to produce anti-H1N1 compounds. Furthermore, the mechanisms of sesamin against cytokine production from influenza type A H1N1-induced PBMCs by ELISA and signaling transduction showed that sesamin exhibits the ability to inhibit proinflammatory cytokines, IL-1β and TNF-α, and to enhance the activity of the immune cell cytokine IL-2 via downregulating the phosphorylated JNK, p38, and ERK1/2 MAPK signaling pathways. This information might very well be useful in the prevention and treatment of immune-induced inflammatory disorders. Topics: Animals; Crystallography, X-Ray; Dioxoles; Humans; Inflammation; Influenza A Virus, H1N1 Subtype; Influenza, Human; Interleukin-1beta; Interleukin-2; Leukocytes, Mononuclear; Lignans; Models, Molecular; Molecular Dynamics Simulation; Orthomyxoviridae Infections; Signal Transduction; Swine; Swine Diseases; Tumor Necrosis Factor-alpha | 2016 |
In vitro anti-influenza virus activities of a new lignan glycoside from the latex of Calotropis gigantea.
A new lignan glycoside, (+)-pinoresinol 4-O-[6″-O-vanilloyl]-β-D-glucopyranoside (1) and two known phenolic compounds, 6'-O-vanilloyltachioside (2) and 6'-O-vanilloylisotachioside (3) were isolated from the latex of Calotropis gigantea (Asclepiadaceae). The structure of the new compound was elucidated by using spectroscopic and chemical methods. Three isolates (1-3) and one authentic compound, (+)-pinoresinol 4-O-β-D-glucopyranoside, were screened for A/PR/8/34 (H1N1) inhibitory activity by cytopathic effect (CPE) inhibition assay on MDCK cells. Compound 1 showed inhibitory activity against A/PR/8/34 (H1N1). In sharp contrast, the other three compounds (2, 3 and (+)-pinoresinol 4-O-β-D-glucopyranoside) did not show such activity. An analysis of structure-activity relationship between 1 and (+)-pinoresinol 4-O-β-D-glucopyranoside revealed that the presence of a vanilloyl group in the sugar moiety of 1 is crucial for its anti-influenza virus activity. Compound 1 was further evaluated for in vitro inhibitory activities against a panel of human and avian influenza viruses by CPE inhibition assay. It showed inhibitory effect against human influenza viruses in both subtypes A and B (IC50 values around 13.4-39.8 µM with SI values of 3.7-11.4), while had no effect on avian influenza viruses. Its antiviral activity against human influenza viruses subtype A was further confirmed by plaque reduction assay. The time course assay indicated that 1 exerts its antiviral activity at the early stage of viral replication. A mechanistic study showed that 1 efficiently inhibited influenza virus-induced activation of NF-κB pathway in a dose-dependent manner, but had no effect on virus-induced activation of Raf/MEK/ERK pathway. Further studies demonstrated that nuclear translocation of transcription factor NF-κB induced by influenza virus was significantly blocked by 1, meanwhile, nuclear export of viral ribonucleoproteins was also effectively inhibited. These findings suggest that this new lignan glycoside from Calotropis gigantea, may have therapeutic potential in influenza virus infection through inhibition of NF-κB pathway and viral ribonucleoproteins nuclear export. Topics: Animals; Antiviral Agents; Dogs; Embryophyta; Glycosides; Humans; Influenza A Virus, H1N1 Subtype; Latex; Lignans; Madin Darby Canine Kidney Cells; Orthomyxoviridae Infections; Virus Replication | 2014 |
Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus.
Arctiin and its aglucone, arctigenin from the fruits of Arctium lappa L. showed potent in vitro antiviral activities against influenza A virus (A/NWS/33, H1N1) (IFV). Based on the data from time-of-addition experiments and on release tests of progeny viruses, arctigenin was assumed to interfere with early event(s) of viral replication after viral penetration into cells, and to suppress the release of progeny viruses from the host cells. Arctiin was orally effective against either IFV-inoculated normal or 5-fluorouracil (5-FU)-treated mice, being less effective as compared with oseltamivir. Noticeably, arctiin produced a larger amount of virus-specific antibody than those of control and oseltamivir in sera collected from 5-FU-treated mice. Furthermore, oral treatment of 5-FU-treated mice with arctiin did not induce any resistant viruses, although the same treatment with oseltamivir induced resistant viruses at a 50% frequency. When the combination of arctiin and oseltamivir was administered to normal mice infected with IFV, the virus yields in both bronchoalveolar lavage fluids and lungs were significantly reduced relative to those in the mice treated with arctiin or oseltamivir alone. Thus, monotherapy of arctiin or combined therapy of arctiin with oseltamivir would be another treatment option for influenza. Topics: Animals; Antiviral Agents; Cells, Cultured; Dogs; Furans; Glucosides; Immunocompetence; Immunocompromised Host; Influenza A virus; Lignans; Magnetic Resonance Spectroscopy; Mice; Mice, Inbred BALB C; Orthomyxoviridae Infections; Spectrometry, Mass, Electrospray Ionization; Spectrophotometry, Infrared | 2010 |