lignans has been researched along with Myocardial-Ischemia* in 8 studies
8 other study(ies) available for lignans and Myocardial-Ischemia
Article | Year |
---|---|
Equivalent evaluation and biological ingredients of Syringa pinnatifolia against acute myocardial ischemia in mice.
The peeled roots, stems, and twigs of Syringa pinnatifolia Hemsl., known as Shan-Chen-Xiang (SCX) in Chinese, has the traditional effects such as anti-Khii, clearing heat and relieving pain. It has been clinically applied for the treatment of heart failure and mental abnormalities, and gradually replaced agarwood in Mongolian medicine.. The present study aims to evaluate whether the key subfraction C (C), a half composition in mass of total ethanol extract (T) of SCX, exerts an equivalent effect against acute myocardial ischemia (AMI) compared to fraction I (I), and what was the potential pharmacologically active constituents of SCX.. Cardiac function, serum marker enzymes, and myocardial tissue pathology of infarcted mice with ligation of the anterior descending (LAD) branch of the left coronary artery were used to evaluate the anti-AMI effect of C and its equivalent potency to that of I. LCMS-IT-TOF was used to identify the main constituents in C and C. C (40 mg/kg) exerts cardioprotective effect in mice, which was equivalent to that of I and T. Lignans, including both representative compounds (24, 25) and other undescribed molecules with low content, significantly contribute to the anti-AMI effect of SCX. However, the anti-AMI property assessment of SCX should not exclude the contribution from the representative sesquiterpenoid ZER. Hence, the exploration of the final potential substances in SCX requires further investigation. Topics: Animals; Hydrogen Peroxide; Lignans; Magnetic Resonance Spectroscopy; Mice; Myocardial Ischemia; Syringa | 2024 |
Exploring the protective effects of schizandrol A in acute myocardial ischemia mice by comprehensive metabolomics profiling integrated with molecular mechanism studies.
Topics: Animals; Apoptosis; Cardiotonic Agents; Cell Line; Cyclooctanes; Enzymes; Lignans; Male; Metabolomics; Mice, Inbred ICR; Myocardial Ischemia; Myocardium; Myocytes, Cardiac; Polycyclic Compounds; Protein Interaction Maps; Rats; Signal Transduction | 2020 |
A Strategy for Optimizing the Combination of Active Components Based on Chinese Medicinal Formula Sheng-Mai-San for Myocardial Ischemia.
Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years and has accumulated considerable knowledge concerning the in vivo efficacy of targeting complicated diseases. TCM formulae are a mixture of hundreds of chemical components with multiple potential targets, essentially acting as a combination therapy of multi-component drugs. However, the obscure substances and the unclear molecular mechanisms are obstacles to their further development and internationalization. Therefore, it is necessary to develop new modern drugs based on the combination of effective components in TCM with exact clinical efficacy. In present study, we aimed to detect optimal ratio of the combination of effective components based on Sheng-Mai-San for myocardial ischemia.. On the basis of preliminary studies and references of relevant literature about Sheng-Mai-San for myocardial ischemia, we chose three representative components (ginsenoside Rb1 (G), ruscogenin (R) and schisandrin (S)) for the optimization design studies. First, the proper proportion of the combination was explored in different myocardial ischemia mice induced by isoproterenol and pituitrin based on orthogonal design. Then, the different proportion combinations were further optimized through uniform design in a multi-model and multi-index mode. Finally, the protective effect of combination was verified in three models of myocardial ischemia injured by ischemia/reperfusion, chronic intermittent hypoxia and acute infarction.. The optimized combination GRS (G: 6 mg/kg, R: 0.75 mg/kg, S: 6 mg/kg) obtained by experimental screening exhibited a significant protective effect on myocardial ischemia injury, as evidenced by decreased myocardium infarct size, ameliorated histological features, decreased myocardial myeloperoxidase (MPO) and malondiadehyde (MDA), calcium overload, and decreased serum lactate dehydrogenase (LDH), creatine kinase MB isoenzyme (CK-MB), cardiac troponin I (cTn-I) activity. In addition, the interactions of three components in combination GRS were also investigated. The combination, compared to G, R and S, could significantly reduce the concentration of serum CK-MB and cTn-I, and decrease myocardial infarct size, which demonstrated the advantages of this combination for myocardial ischemia.. Our results demonstrated that the optimized combination GRS could exert significant cardioprotection against myocardial ischemia injury with similar effect compared to Sheng Mai preparations, which might provide some pharmacological evidences for further development of new modern Chinese drug for cardiovascular diseases basing on traditional Chinese formula with affirmative therapeutic effect. Topics: Animals; Creatine Kinase, MB Form; Cyclooctanes; Disease Models, Animal; Drug Combinations; Drugs, Chinese Herbal; Ginsenosides; Heart; Isoproterenol; L-Lactate Dehydrogenase; Lignans; Medicine, Chinese Traditional; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Pituitary Hormones, Posterior; Polycyclic Compounds; Spirostans; Troponin I | 2018 |
An integrated pathway interaction network for the combination of four effective compounds from ShengMai preparations in the treatment of cardio-cerebral ischemic diseases.
SMXZF (a combination of ginsenoside Rb1, ginsenoside Rg1, schizandrin and DT-13) derived from Chinese traditional medicine formula ShengMai preparations) is capable of alleviating cerebral ischemia-reperfusion injury in mice. In this study we used network pharmacology approach to explore the mechanisms of SMXZF in the treatment of cardio-cerebral ischemic diseases.. Based upon the chemical predictors, such as chemical structure, pharmacological information and systems biology functional data analysis, a target-pathway interaction network was constructed to identify potential pathways and targets of SMXZF in the treatment of cardio-cerebral ischemia. Furthermore, the most related pathways were verified in TNF-α-treated human vascular endothelial EA.hy926 cells and H2O2-treated rat PC12 cells.. Three signaling pathways including the NF-κB pathway, oxidative stress pathway and cytokine network pathway were demonstrated to be the main signaling pathways. The results from the gene ontology analysis were in accordance with these signaling pathways. The target proteins were found to be associated with other diseases such as vision, renal and metabolic diseases, although they exerted therapeutic actions on cardio-cerebral ischemic diseases. Furthermore, SMXZF not only dose-dependently inhibited the phosphorylation of NF-κB, p50, p65 and IKKα/β in TNF-α-treated EA.hy926 cells, but also regulated the Nrf2/HO-1 pathway in H2O2-treated PC12 cells.. NF-κB signaling pathway, oxidative stress pathway and cytokine network pathway are mainly responsible for the therapeutic actions of SMXZF against cardio-cerebral ischemic diseases. Topics: Animals; Brain Ischemia; Cell Line; Cyclooctanes; Drug Combinations; Drugs, Chinese Herbal; Ginsenosides; Humans; Lignans; Myocardial Ischemia; NF-kappa B; Oxidative Stress; PC12 Cells; Polycyclic Compounds; Protein Interaction Maps; Rats; Saponins; Signal Transduction; Systems Biology; Tumor Necrosis Factor-alpha | 2015 |
Schisandrin B-induced glutathione antioxidant response and cardioprotection are mediated by reactive oxidant species production in rat hearts.
To investigate the involvement of reactive oxidant species (ROS), presumably arising from cytochrome P-450 (CYP)-catalyzed metabolism of schisandrin B (Sch B), in triggering glutathione antioxidant response, Sch B induced reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent and CYP-catalyzed reaction and associated ROS production were examined in rat heart microsomes. Sch B analogs were also studied for comparison. Using rat heart microsomes as a source of CYP, Sch B and schisandrin C (Sch C), but not schisandrin A and dimethyl diphenyl bicarboxylate (an intermediate compound derived from the synthesis of Sch C), were found to serve as co-substrate for the CYP-catalyzed NADPH oxidation reaction, with concomitant production of ROS. The stimulation of CYP-catalyzed NADPH oxidation reaction and/or ROS production by Sch B or Sch C correlated with the increase in mitochondrial reduced glutathione level and protection against ischemia/reperfusion (I/R) injury in rat hearts. The involvement of ROS in Sch B-induced cardioprotection was further confirmed by the suppressive effect produced by N-acetylcysteine or alpha-tocopherol pretreatment. Taken together, these results suggest that Sch B-induced glutathione antioxidant response and cardioprotection may be mediated by ROS arising from CYP-catalyzed reaction. Topics: Acetylcysteine; alpha-Tocopherol; Animals; Antioxidants; Cardiovascular Agents; Cyclooctanes; Cytochrome P-450 Enzyme System; Drugs, Chinese Herbal; Female; Glutathione; Lignans; Microsomes; Mitochondria; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; NADP; Oxidation-Reduction; Phytotherapy; Polycyclic Compounds; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Schisandra | 2010 |
Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study.
Enterolactone is a plant-derived compound that has been associated with a reduced risk of acute coronary events and cancer. Several studies have suggested that serum enterolactone concentration may play a role as a biomarker of a diet high in fiber and vegetables. Owing to its phenolic structure, enterolactone and its plant lignan precursors, which are converted by intestinal bacteria to enterolactone, are potential antioxidants.. The associations between serum enterolactone level and the risk of coronary heart disease (CHD)-related, cardiovascular disease (CVD)-related, and all-cause mortality were investigated in the Kuopio Ischaemic Heart Disease Risk Factor Study, which is a prospective population-based study of middle-aged Finnish men. The serum enterolactone concentration and cardiovascular risk factors were determined in 1889 men aged 42 to 60 years. In an average follow-up of 12.2 years, 70 CHD-related, 103 CVD-related, and 242 all-cause deaths occurred in participants free of prior CVD.. Multivariate analyses showed significant associations between elevated serum enterolactone concentration and reduced risk of CHD- and CVD-related mortality, but weaker associations in relation to all-cause mortality. In the Cox proportional hazards regression model adjusting for the most potent confounding factors, the risk of CHD-related (P =.03 for trend) and CVD-related (P =.04 for trend) death decreased linearly across quartiles of serum enterolactone concentration.. Our data suggest that a high serum enterolactone level is associated with reduced CHD- and CVD-related mortality in middle-aged Finnish men. These results add to the evidence supporting the importance of whole grain foods, fruits, and vegetables in the prevention of premature death from CVD. Topics: 4-Butyrolactone; Adult; Cause of Death; Finland; Follow-Up Studies; Humans; Lignans; Male; Middle Aged; Myocardial Ischemia; Prospective Studies; Risk Assessment; Risk Factors | 2003 |
Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats.
The accumulation of oxygen-free radicals and activation of neutrophils are strongly implicated as important pathophysiological mechanisms mediating myocardial ischemia/reperfusion injury. It has been proven that various antioxidants have cardioprotective effects. Magnolol, an active component extracted from the Chinese medicinal herb Magnolia officinalis, possesses potent antioxidant and free radical scavenging activities. In this study, the cardioprotective activity of magnolol was evaluated in an open-chest anesthetized rat model of myocardial ischemia/reperfusion injury. The results demonstrated that pretreatment with magnolol (0.2 and 0.5 microg/kg, i.v. bolus) at 10 min before 45 min of left coronary artery occlusion, significantly suppressed the incidence of ventricular fibrillation and mortality when compared with the control group. Magnolol (0.2 and 0.5 microg/kg) also significantly reduced the total duration of ventricular tachycardia and ventricular fibrillation. After 1 h of reperfusion, pretreatment with magnolol (0.2 and 0.5 microg/kg) caused a significant reduction in infarct size. In addition, magnolol (0.2 microg/kg) significantly reduced superoxide anion production and myeloperoxidase activity, an index of neutrophil infiltration in the ischemic myocardium. In addition, pretreatment with magnolol (0.2 and 0.5 microg/kg) suppressed ventricular arrhythmias elicited by reperfusion following 5 min of ischemia. In vitro studies of magnolol (5, 20 and 50 microM) significantly suppressed N-formylmethionyl-leucyl-phenylalanine (fMLP; 25 nM)-activated human neutrophil migration in a concentration-dependent manner. It is concluded that magnolol suppresses ischemia- and reperfusion-induced ventricular arrhythmias and reduces the size of the infarct resulting from ischemia/reperfusion injury. This pronounced cardioprotective activity of magnolol may be mediated by its antioxidant activity and by its capacity for neutrophil inhibition in myocardial ischemia/reperfusion. Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Biphenyl Compounds; Chemotaxis, Leukocyte; Dose-Response Relationship, Drug; Female; Hemodynamics; Lignans; Male; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Neutrophils; Peroxidase; Rats; Rats, Sprague-Dawley; Superoxides | 2001 |
Magnolol reduces infarct size and suppresses ventricular arrhythmia in rats subjected to coronary ligation.
1. Magnolol is an active component of Magnolia officinalis. It is 1000-times more potent than alpha-tocopherol in inhibiting lipid peroxidation in rat heart mitochondria. In the present study, the in vivo antiarrhythmic and anti-ischaemic effects of magnolol in coronary ligated rats were investigated. 2. Male Sprague-Dawley rats were anaesthetized with urethane. Magnolol, at dosages of 10(-7), 10(-8) and 10(-9) g/kg, was administered intravenously 15 min before ligation of the coronary artery. 3. The incidence and duration of ventricular tachycardia and ventricular fibrillation during 30 min coronary ligation were significantly reduced by magnolol. Ventricular arrhythmias during 10 min reperfusion after the relief of coronary ligation were also reduced. 4. In rats subjected to 4 h coronary ligation, 10(-7) and 10(-8) g/kg magnolol significantly reduced infarct size. 5. We conclude that magnolol may protect the myocardium against ischaemic injury and suppress ventricular arrhythmia during ischaemia and reperfusion. Topics: Analysis of Variance; Animals; Arrhythmias, Cardiac; Biphenyl Compounds; Ligation; Lignans; Male; Myocardial Ischemia; Platelet Aggregation Inhibitors; Rats; Rats, Sprague-Dawley | 1996 |