lignans and Erectile-Dysfunction

lignans has been researched along with Erectile-Dysfunction* in 2 studies

Reviews

1 review(s) available for lignans and Erectile-Dysfunction

ArticleYear
Functional Foods and Nutraceuticals as Dietary Intervention in Chronic Diseases; Novel Perspectives for Health Promotion and Disease Prevention.
    Journal of dietary supplements, 2018, Nov-02, Volume: 15, Issue:6

    Functional foods describe the importance of foods in promoting health and preventing diseases aside their primary role of providing the body with the required amount of essential nutrients such as proteins, carbohydrates, vitamins, fats, and oils needed for its healthy survival. This review explains the interaction of functional food bioactive compounds including polyphenols (phenolic acids [hydroxybenzoic acids and hydroxycinnamic acids], flavonoids [flavonols, flavones, flavanols, flavanones, isoflavones, proanthocyanidins], stilbenes, and lignans), terpenoids, carotenoids, alkaloids, omega-3 and polyunsaturated fatty acids, among others with critical enzymes (α- amylase, α- glucosidase, angiotensin-I converting enzyme [ACE], acetylcholinesterase [AChE], and arginase) linked to some degenerative diseases (type-2 diabetes, cardiovascular diseases [hypertension], neurodegenerative diseases [Alzheimer's disease] and erectile dysfunction). Different functional food bioactive compounds may synergistically/additively confer an overwhelming protection against these degenerative diseases by modulating/altering the activities of these critical enzymes of physiological importance.

    Topics: Alkaloids; Cardiovascular Diseases; Carotenoids; Chronic Disease; Diabetes Mellitus, Type 2; Dietary Supplements; Erectile Dysfunction; Flavonoids; Functional Food; Health Promotion; Humans; Lignans; Male; Neurodegenerative Diseases; Nutritional Requirements; Phenols; Polyphenols; Stilbenes

2018

Other Studies

1 other study(ies) available for lignans and Erectile-Dysfunction

ArticleYear
Cavernosum smooth muscle relaxation induced by Schisandrol A via the NO-cGMP signaling pathway.
    Cellular and molecular biology (Noisy-le-Grand, France), 2016, Mar-31, Volume: 62, Issue:3

    To evaluate the effect of Schisandrol A on rabbit corpus cavernosum smooth muscle and elucidate the potential mechanism. Penises were obtained from healthy male New Zealand White rabbits (2.5-3.0 kg). The pre-contracted penis with phenylephrine (Phe, 10 µM) was treated with accumulative concentrations of Schisandrol A (10-7, 10-6, 10-5 and 10-4 M). The change in intracavernosum pressure (ICP) and tension was recorded, cyclic nucleotides in the cavernosum tissue were measured by radioimmunoassay, mRNA level and expression of endothelial nitric oxide synthase (eNOS) and neuronal NOS (nNOS) were measured by real time PCR and western blot respectively. The corpus cavernosum smooth muscle relaxation induced by Schisandrol A was in a dose-dependent manner. Pre-treatment with NOS inhibitor (Nω nitro-L-arginine-methyl ester, L-NAME) or guanylyl cyclase inhibitor (1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, ODQ) significantly diminished the relaxation. The cyclic guanosine monophosphate (cGMP) level was significantly increased in the cavernosum tissue. Real time PCR and western blot showed the mRNA level and expression of eNOS and nNOS was also upregulated. Schisandrol A relaxes the cavernosum smooth muscle by activating NO-cGMP signaling pathway. It may be a new promising treatment for erectile dysfunction and cardiovascular disease.

    Topics: Animals; Cyclic GMP; Cyclooctanes; Erectile Dysfunction; Gene Expression Regulation; Lignans; Male; Muscle Relaxation; Muscle, Smooth; Nitric Oxide; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Penis; Rabbits; Schisandra; Signal Transduction

2016