lignans and Encephalitis

lignans has been researched along with Encephalitis* in 2 studies

Other Studies

2 other study(ies) available for lignans and Encephalitis

ArticleYear
Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome.
    Biochemical and biophysical research communications, 2017, 11-04, Volume: 493, Issue:1

    Arctigenin (ARC), a phenylpropanoid dibenzylbutyrolactone lignan derived from Arctium lappa L, has been reported to protect against cerebral ischemia injury in rats, but the underlying mechanism is unclear. In this study, we investigated whether ARC ameliorated ischemic stroke by inhibiting NLRP3 inflammasome-derived neuroinflammation and whether SIRT1 signaling was involved in this process. ARC (20 mg/kg) or vehicle were intraperitoneally injected to Sprague-Dawley rats for 3 days before middle cerebral artery occlusion (MCAO) surgery performed. The infarct volume, neurological score, brain water content, neuroinflammation, NLRP3 inflammasome activation and SIRT1 protein expression were assessed. Furthermore, we also investigated whether ARC protected against cerebral ischemia via SIRT1-dependent inhibition of NLRP3 inflammasome by administrating EX527, a specific SIRT1 inhibitor, under oxygen-glucose deprivation (OGD) condition. We found that ARC pretreatment decreased infarct volume, neurological score and brain water content. Moreover, ARC treatment effectively inhibited cerebral ischemia induced NLRP3 inflammasome activation and IL-1β, IL-18 secretion both in vivo and in vitro. Futhermore, ARC treatment activated Silent information regulator 1 (SIRT1) singnaling in the brain. Importantly, suppress of SIRT1 reversed the inhibitory effect of ARC on NLRP3 inflammasome activation. Taken together our results demonstrated that ARC may confer protection against ischemic stroke by inhibiting NLRP3 inflammasome activation. The activation of SIRT1 signaling pathway may contribute to the neuroprotection of ARC in MCAO.

    Topics: Animals; Dose-Response Relationship, Drug; Down-Regulation; Encephalitis; Furans; Inflammasomes; Lignans; Male; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Sprague-Dawley; Sirtuin 1; Stroke; Treatment Outcome

2017
Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke.
    Neurotoxicology, 2014, Volume: 45

    Stroke is a severe neurological disorder characterized by the abrupt loss of blood circulation into the brain resulting into wide ranging brain and behavior abnormalities. The present study was designed to evaluate molecular mechanism by which sesamin (SES) induces neuroprotection in mouse model of ischemic stroke. The results of this study demonstrate that SES treatment (30 mg/kg bwt) significantly reduced infarction volume, lipid per-oxidation, cleaved-caspase-3 activation, and increased GSH activity following MCAO in adult male mouse. SES treatment also diminished iNOS and COX-2 protein expression, and significantly restored SOD activity and protein expression level in the ischemic cortex of the MCAO animals. Furthermore, SES treatment also significantly reduced inflammatory and oxidative stress markers including Iba1, Nox-2, Cox-2, peroxynitrite compared to placebo MCAO animals. Superoxide radical production, as studied by DHE staining method, was also significantly reduced in the ischemic cortex of SES treated compared to placebo MCAO animals. Likewise, downstream effects of superoxide free radicals i.e. MAPK/ERK and P38 activation was also significantly attenuated in SES treated compared to placebo MCAO animals. In conclusion, these results suggest that SES induces significant neuroprotection, by ameliorating many signaling pathways activated/deactivated following cerebral ischemia in adult mouse.

    Topics: Animals; Brain Ischemia; Dioxoles; Disease Models, Animal; Encephalitis; Infarction, Middle Cerebral Artery; Lignans; Male; Mice; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; Oxidative Stress; Signal Transduction; Stroke

2014