lignans and Diabetic-Retinopathy

lignans has been researched along with Diabetic-Retinopathy* in 5 studies

Other Studies

5 other study(ies) available for lignans and Diabetic-Retinopathy

ArticleYear
Arctigenin Prevents Retinal Edema in a Murine Retinal Vein Occlusion Model.
    Biological & pharmaceutical bulletin, 2023, Volume: 46, Issue:3

    Macular edema causes vision loss in patients with retinal vein occlusion (RVO) and diabetic macular edema (DME). The intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is used for treatment; however, this therapy is invasive, and recurrence occurs in some cases. The establishment of a non-invasive treatment would help to solve these problems. Here, we focused on arctigenin, a lignan polyphenol found in burdock sprout, and has effects on inflammatory and microcirculatory when taken orally. We hypothesized that oral intake of arctigenin could be effective against retinal edema in RVO and DME. In this study, the degree of retinal edema by measuring the total retinal thickness using optical coherence tomography (OCT) and the thickness of the inner nuclear layer (INL) by hematoxylin-eosin (H&E) staining were investigated. Oral administration of arctigenin ameliorated retinal edema in an RVO murine model by inhibiting the decrease in occludin and vascular endothelial (VE)-cadherin. Moreover, in retinas with edema, arctigenin suppressed the induction of VEGF, tumor necrosis factor α (TNFα), and matrix metallopeptidase 9 (MMP9). Next, the effects of arctigenin on barrier function were assessed in human retinal microvascular endothelial cells (HRMECs) by measuring the trans-endothelial electrical resistance (TEER) and conducting fluorescein isothiocyanate (FITC)-dextran permeability assays. Arctigenin showed a protective effect against VEGF-induced barrier dysfunction. In addition, arctigenin inhibited the TNFα-mediated activation of the nuclear factor-kappaB (NF-κB)/p38 mitogen-activated protein kinase (MAPK) pathway. These results suggested that oral administration of arctigenin has beneficial effects on retinal edema by inhibiting vascular hyperpermeability in endothelial cells.

    Topics: Animals; Diabetic Retinopathy; Endothelial Cells; Humans; Lignans; Macular Edema; Mice; Microcirculation; Papilledema; Retinal Vein Occlusion; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A

2023
Sesamin suppresses high glucose-induced microglial inflammation in the retina in vitro and in vivo.
    Journal of neurophysiology, 2022, 02-01, Volume: 127, Issue:2

    Diabetic retinopathy (DR) is the most common microvascular complication in diabetes and the leading cause of vision loss and blindness globally. Due to the unsatisfied outcome of current therapies, a novel strategy needs to be developed. BV2 microglial cells were treated with 25 natural compounds, respectively, stimulated by high glucose (HG) to screen for a potential candidate drug. Streptozotocin (STZ)-induced diabetic mice were injected with different doses of the candidate sesamin every 2 days for 1 mo. Then, its protective role and possible mechanism were evaluated. Sesamin was selected as the candidate drug due to its inhibition on the secretion of tumor necrosis factor-α (TNFα) in the screen assay. Sesamin also dose-dependently inhibited mRNA levels of HG-induced inflammatory cytokines, including TNFα, interleukin (IL)-1β, and IL-6, activated NF-κB signaling pathway, and reduced oxidative stress by decreasing reactive oxygen species levels and increasing antioxidant enzymes in the BV2 and primary retinal microglia. In addition, sesamin alleviated brain-retinal barrier breakdown by Evans blue leakage assay and reduced inflammation in streptozotocin-induced diabetic mice. In conclusion, sesamin effectively inhibits HG-induced microglial inflammation in the retina both in vivo and in vitro, suggesting that sesamin might serve as a candidate drug for DR treatment.

    Topics: Animals; Anti-Inflammatory Agents; Cytokines; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Dioxoles; Inflammation; Lignans; Male; Mice; Microglia

2022
The effect of total lignans from Fructus Arctii on Streptozotocin-induced diabetic retinopathy in Wistar rats.
    Journal of ethnopharmacology, 2020, Jun-12, Volume: 255

    Fructus Arctii is the dried ripe fruit of Arctium lappa L. (family Asteraceae). It is a well-known Chinese Materia Medica that was included in the Chinese pharmacopoeia because of its traditional therapeutic actions, such as heat removal, detoxification, and elimination of swelling. Since ancient times Fructus Arctii has been used extensively in a number of classical drug formulas to treat type 2 diabetes mellitus. Modern pharmacological studies have shown that certain components of Fructus Arctii have multiple physiological activities on type 2 diabetes and its complications.. We have reported the inhibitory effect of total lignans from Fructus Arctii (TLFA) on aldose reductase, the key enzyme in the polyol pathway, which is considered to be closely related to the onset of diabetic retinopathy (DR). The present study aimed to observe the preventive and therapeutic effects of TLFA on DR in Streptozotocin (STZ)-induced DR rats.. TLFA was prepared from Fructus Arctii and its content was determined using UV spectrophotometry. The DR model was induced by STZ in Wistar rats. For DR prevention, the animals were gavaged once daily for 9 weeks with TLFA (1.38, 0.69, and 0.35 g/kg/day) as soon as they were confirmed as diabetes models. Pathological changes to retinal tissues and the expression of vascular endothelial growth factor (VEGF) and protein kinase C (PKC) in the retina were detected after TLFA treatment. The effects of TLFA on blood glucose levels and body weight were also observed. For DR treatment, the animals were gavaged once daily for 12 weeks with TLFA (1.38 and 0.69 g/kg/day) at 3 months after they were confirmed as diabetes models. The therapeutic effect was studied using quantitative detection of blood-retina barrier (BRB) breakdown via an Evans Blue leakage assay.. For DR prevention, after 9 weeks of TLFA administration, histopathological examination of retinal tissue showed that TLFA improved the lesions in the retina. Changes to retinal microstructures such as capillaries, ganglion cells, bipolar cells, and the membrane disk examined by electron microscopy further confirmed that TLFA has a preventive effect on retinopathy. Terminal deoxynucleotidyl Transferase-mediated dUTP nick end labeling (TUNEL) detection showed that TLFA could inhibit retinal cell apoptosis in the diabetic rats, and fasting blood glucose (FBG) levels of rats in the TLFA-treated groups decreased during the experiment. For DR treatment, after 3 months of administration, the amount of dye leakage in the TLFA-administered groups was reduced by more than 50% compared with that in the model group, which indicated that TLFA has a therapeutic effect on middle and late DR. Messenger RNA (mRNA) expression of VEGF and PKCβ2 in the retina detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (FQ-RT-PCR) showed that TLFA could inhibit the expression of them, which was consistent with the results of immunohistochemistry (IHC).. TLFA has a preventive and therapeutic effect on DR. Its mechanism of action on DR is related to inhibiting PKC activation and blocking VEGF elevation.

    Topics: Animals; Apoptosis; Arctium; Blood Glucose; Blood-Retinal Barrier; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Enzyme Activation; Fruit; Lignans; Male; Plant Extracts; Protein Kinase C beta; Rats, Wistar; Retina; Retinal Ganglion Cells; Signal Transduction; Streptozocin; Vascular Endothelial Growth Factor A

2020
Anti-inflammatory role of sesamin in STZ induced mice model of diabetic retinopathy.
    Journal of neuroimmunology, 2016, 06-15, Volume: 295-296

    Diabetic retinopathy (DR) is the common cause of diabetic vascular complications that leads to the blindness in the working age population throughout the world. Free radicals mediated oxidative stress and inflammation play a significant role in pathophysiology of DR. To find a new and safe drug to treat DR is still challenging and for that purpose the natural compounds may be therapeutic agents. Here we show that sesamin (SES), which is the main component of sesame seed and its oil, and has been reported as potent antioxidant and neuroprotective, could be a therapeutic agent in DR. In the present study, we investigated protective effect of SES in Streptozotocin (STZ) induced DR in mice. The mice were divided into three groups (Control, DR and DR+SES) for the study. After two weeks post-diabetic establishment, mice were treated with SES (30mg/kg BW, i.p, alternate day) for four weeks. Mice body weight and blood glucose level were measured from each group. The microglial activation of retina was determined by immunohistochemistry analysis by using Iba-1 as a microglia marker. Retinal mRNA levels of Iba-1, tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and Intercellular Adhesion Molecule 1 (ICAM-1) were examined by qRT-PCR. The level of iNOS protein expression was examined by immunoblotting. Together these data demonstrate that SES treatment lowered the progression of diabetic retinal injury by: 1) decreasing blood glucose level, 2) suppressing microglia activation, 3) reducing retinal TNF-α and ICAM-1 levels and 4) quenching iNOS expression. In conclusion, the results suggest that SES treatment may be of therapeutic benefit in reducing the progression of DR by ameliorating hyperglycemia and inflammation in diabetic retina.

    Topics: Analysis of Variance; Animals; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Blood Glucose; Body Weight; Calcium-Binding Proteins; Diabetic Retinopathy; Dioxoles; Disease Models, Animal; Intercellular Adhesion Molecule-1; Lignans; Mice; Microfilament Proteins; Microglia; Nitric Oxide Synthase Type II; Retina; RNA, Messenger; Streptozocin; Tumor Necrosis Factor-alpha; Up-Regulation

2016
Lignans Extracted from Eucommia Ulmoides Oliv. Protects Against AGEs-Induced Retinal Endothelial Cell Injury.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 39, Issue:5

    Advanced glycation end products (AGEs) could elicit oxidative stress, trigger and aggravate endothelium damage in several ischemic retinopathies including diabetic retinopathy (DR). The leaves of Eucommia ulmoides O., also referred to as Tu-chung or Du-zhong, have been used for the treatment of hypertension and diabetes, showing great antioxidant activity and anti-glycation activity. Lignans is one of the main bioactive components of Eucommia ulmoides. This study mainly investigated the effect of lignans treatment on AGEs-induced endothelium damage.. MTT assay, Hoechst staining, and calcein-AM/ propidium iodide (PI) staining was conducted to determine the effect of lignans treatment on endothelial cell function in vitro. Retinal trypsin digestion, Evans blue assay, isolectin staining, and western blots were conducted to determine the effect of lignans treatment on retinal microvascular function in vivo. Western blot, protein immunoprecipitation (IP), MTT assays, and enzyme activity assay was conducted to detect the effect of ligans treatment on oxidative stress response.. Lignans protected retinal endothelial cell against AGEs-induced injury in vitro and diabetes-induced vascular dysfunction in vivo. Lignans treatment could regulate oxidative stress response in retinal endothelial cell line, retina, and liver. Moreover, we showed that NRF2/HO-1 signaling was critical for lignans-mediated oxidative stress regulation.. Lignans treatment could protect against endothelial dysfunction in vivo and in vitro via regulating Nrf2/HO-1 signaling. Lignans might be developed as a promising drug for the treatment of diabetes-induced microvascular dysfunction.

    Topics: Animals; Blood-Retinal Barrier; Cell Line; Cell Survival; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Endothelial Cells; Eucommiaceae; Evans Blue; Gene Expression Regulation; Glycation End Products, Advanced; Heme Oxygenase-1; Hyperglycemia; Lignans; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Plant Extracts; Plant Leaves; Reactive Oxygen Species; Retina; Signal Transduction; Streptozocin

2016