lignans has been researched along with Constriction--Pathologic* in 2 studies
2 other study(ies) available for lignans and Constriction--Pathologic
Article | Year |
---|---|
Pinoresinol diglucoside (PDG) attenuates cardiac hypertrophy via AKT/mTOR/NF-κB signaling in pressure overload-induced rats.
Pinoresinol diglucoside (PDG), the active compound extracted from Eucommia ulmoides, Styrax sp. and Forsythia suspensa, plays the roles in regulating hypertension, inflammation and oxidative stress.. Considering that hypertension and inflammation has been proved to contribute to cardiac remodeling, we tested the effects of PDG on cardiac hypertrophy (CM).. Male Sprague Dawley (SD) rats were used to construct hypertrophic rats by partial abdominal aortic constriction (AAC)-surgery. PDG solution (2 mg/ml) was used to treat AAC-induced rats by intraperitoneal injection at low dose (L-PDG, 2.5 mg/kg per day), medium dose (M-PDG, 5 mg/kg per day), and high dose (H-PDG, 7.5 mg/kg per day) for 3 weeks post AAC-surgery. CM was evaluated by the ratio of left ventricular weight to body weight ratio (LVW/BW), left ventricular wall thickness by H&E staining, and collagen content deposit by Masson's staining. Further, isoproterenol (ISO) and phenylephrine (PE) were used to produce cellular models of CM in neonatal rat ventricular cardiomyocytes (NRVMs). PDG pre-treated NRVMs 2 h at low dose (L-PDG, 2.5 μg/ml), medium dose (M-PDG, 5 μg/ml), and high dose (H-PDG, 7.5 μg/ml) for 24 h with or without PE- and ISO-stimulation. CM was evaluated by the expressions of hypertrophic biomarkers. Next, the hypertrophic biomarkers and pro-inflammatory cytokines were measured using quantitative real-time PCR (qRT-PCR), the expressions of protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/transcription factor nuclear factor-kappa B (NF-kB) signaling pathway were determined by Western blotting.. PDG treatment prevented cardiac histomorphology damages, decreased upregulations of hypertrophic biomarkers, and prevented fibrosis and inflammation after pressure overload resulting from AAC-surgery. Consistently, PDG remarkably inhibited the changes of cardiomyocyte hypertrophic biomarkers and inflammatory responses in cellular models of CM. Interestingly, PDG administration inhibited the activation of AKT/mTOR/NF-kB signaling pathway both in vivo and in vitro.. PDG prevents AAC-induced CM in vivo, PE- and ISO-induced CM in vitro. The AKT/mTOR/NF-kB signaling pathway could be the potential therapeutic target involved in the protection of PDG. These findings provide novel evidence that PDG might be a promising therapeutic strategy for CM. Topics: Animals; Animals, Newborn; Aorta, Abdominal; Cardiomegaly; Constriction, Pathologic; Disease Models, Animal; Fibrosis; Inflammation; Isoproterenol; Lignans; Male; Myocytes, Cardiac; NF-kappa B; Phenylephrine; Pressure; Primary Cell Culture; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2021 |
Magnolol induces apoptosis in vascular smooth muscle.
Magnolol, an active component extracted from Magnolia officinalis, has various pharmacological effects, including potent antioxidant activity. In the present study, we investigated the effect of magnolol on apoptosis in rat vascular smooth muscle cells (VSMCs), using terminal-deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and flow cytometric analysis. Magnolol (5-20 micro M) concentration-dependently induced significant VSMC apoptosis, this effect being blocked by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk, 50 micro M). To study the molecular mechanism, the mitochondrial death pathway was examined. Magnolol increased caspase-3 and caspase-9 activities significantly and reduced the mitochondrial potential (Deltapsi(m)). The levels of B-cell leukaemia/lymphoma-2 (Bcl-2), but not those of Bcl-2-associated X protein (Bax) or Bcl-x(L), were down-regulated concentration dependently by magnolol. In an animal model, balloon angioplasty-induced neointima formation was inhibited significantly by magnolol and Bcl-2 protein levels were reduced. Taken together, these results show that magnolol induces apoptosis in VSMCs via the mitochondrial death pathway. This effect is mediated through down-regulation of Bcl-2 protein levels, both in vivo and in vitro. Magnolol thus shows potential as a novel therapeutic agent for the treatment of atherosclerosis and re-stenosis. Topics: Angioplasty, Balloon; Animals; Antioxidants; Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Biphenyl Compounds; Carotid Artery Diseases; Caspase 3; Caspase 9; Caspases; Cells, Cultured; Constriction, Pathologic; Down-Regulation; Enzyme Activation; Lignans; Male; Membrane Potentials; Mitochondria, Muscle; Muscle, Smooth, Vascular; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley | 2003 |