lignans has been researched along with Cardiomegaly* in 8 studies
8 other study(ies) available for lignans and Cardiomegaly
Article | Year |
---|---|
Schisandrin A protects against isoproterenol‑induced chronic heart failure via miR‑155.
Topics: Animals; Atrial Natriuretic Factor; Cardiomegaly; Cyclooctanes; Echocardiography; Heart Failure; Heart Ventricles; Isoproterenol; Lignans; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Myocardium; Myocytes, Cardiac; Natriuretic Peptide, Brain; Polycyclic Compounds; Rats; Rats, Sprague-Dawley; Signal Transduction; Ventricular Function, Left | 2022 |
Pinoresinol diglucoside (PDG) attenuates cardiac hypertrophy via AKT/mTOR/NF-κB signaling in pressure overload-induced rats.
Pinoresinol diglucoside (PDG), the active compound extracted from Eucommia ulmoides, Styrax sp. and Forsythia suspensa, plays the roles in regulating hypertension, inflammation and oxidative stress.. Considering that hypertension and inflammation has been proved to contribute to cardiac remodeling, we tested the effects of PDG on cardiac hypertrophy (CM).. Male Sprague Dawley (SD) rats were used to construct hypertrophic rats by partial abdominal aortic constriction (AAC)-surgery. PDG solution (2 mg/ml) was used to treat AAC-induced rats by intraperitoneal injection at low dose (L-PDG, 2.5 mg/kg per day), medium dose (M-PDG, 5 mg/kg per day), and high dose (H-PDG, 7.5 mg/kg per day) for 3 weeks post AAC-surgery. CM was evaluated by the ratio of left ventricular weight to body weight ratio (LVW/BW), left ventricular wall thickness by H&E staining, and collagen content deposit by Masson's staining. Further, isoproterenol (ISO) and phenylephrine (PE) were used to produce cellular models of CM in neonatal rat ventricular cardiomyocytes (NRVMs). PDG pre-treated NRVMs 2 h at low dose (L-PDG, 2.5 μg/ml), medium dose (M-PDG, 5 μg/ml), and high dose (H-PDG, 7.5 μg/ml) for 24 h with or without PE- and ISO-stimulation. CM was evaluated by the expressions of hypertrophic biomarkers. Next, the hypertrophic biomarkers and pro-inflammatory cytokines were measured using quantitative real-time PCR (qRT-PCR), the expressions of protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/transcription factor nuclear factor-kappa B (NF-kB) signaling pathway were determined by Western blotting.. PDG treatment prevented cardiac histomorphology damages, decreased upregulations of hypertrophic biomarkers, and prevented fibrosis and inflammation after pressure overload resulting from AAC-surgery. Consistently, PDG remarkably inhibited the changes of cardiomyocyte hypertrophic biomarkers and inflammatory responses in cellular models of CM. Interestingly, PDG administration inhibited the activation of AKT/mTOR/NF-kB signaling pathway both in vivo and in vitro.. PDG prevents AAC-induced CM in vivo, PE- and ISO-induced CM in vitro. The AKT/mTOR/NF-kB signaling pathway could be the potential therapeutic target involved in the protection of PDG. These findings provide novel evidence that PDG might be a promising therapeutic strategy for CM. Topics: Animals; Animals, Newborn; Aorta, Abdominal; Cardiomegaly; Constriction, Pathologic; Disease Models, Animal; Fibrosis; Inflammation; Isoproterenol; Lignans; Male; Myocytes, Cardiac; NF-kappa B; Phenylephrine; Pressure; Primary Cell Culture; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2021 |
Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction.
Diabetes is a risk factor that increases the occurrence and severity of cardiovascular events. Cardiovascular complications are the leading cause of mortality of 75% of patients with diabetes >40 years old. Sesamin, the bioactive compound extracted from Sesamum indicum, is a natural compound that has diverse beneficial effects on hypoglycemia and reducing cholesterol. The aim of this study is to investigate sesamin effects to diabetes-inducing cardiac hypertrophy. In the present study bioinformatics analysis demonstrated cardiac hypertrophy signaling may be the most important pathway for upregulating genes in sesamin-treated groups. To verify the bioinformatics prediction, sesamin was used as the main bioactive compound to attenuate the impact of diabetes induced by streptozotocin (STZ) on cardiac function in a rat model. The results revealed that oral administration of sesamin for 4 weeks (100 and 200 mg/kg body weight) marginally improved blood glucose levels, body weight and significantly ameliorated the effects on heart rate and blood pressure in rats with type 1 diabetes relative to control rats. The QT interval of sesamin was also reduced relative to the control group. The findings indicated that sesamin has potential cardioprotective effects in the STZ-induced diabetes model. This suggested that this can be used as a novel treatment for patients with diabetes with cardiac dysfunction complication. Topics: Administration, Oral; Animals; Blood Glucose; Blood Pressure; Body Weight; Cardiomegaly; Diabetes Mellitus, Experimental; Dioxoles; Electrocardiography; Heart; Heart Rate; Lignans; Male; Myocardium; Rats; Rats, Sprague-Dawley; Streptozocin | 2017 |
Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway.
Cardiac remodeling is associated with oxidative stress. Sesamin, a well-known antioxidant from sesamin seeds, have been used extensively as traditional health foods. However, there is little known about the effect of sesamin on cardiac remodeling. Therefore, the present study aimed to determine whether sesamin could protect against cardiac remodeling and to clarify potential molecular mechanisms.. The mice were subjected to either transverse aortic constriction (TAC) or sham surgery (control group). Beginning one week after surgery, the mice were oral gavage treated with sesamin (100mg·kg-1·day-1) or vehicle for 3 weeks. Cardiac hypertrophy was assessed by echocardiographic parameters, histological analyses and hypertrophic markers.. Sesamin alleviated cardiac hypertrophy, inhibited fibrosis and attenuated the inflammatory response. The increased production of reactive oxygen species, the activation of ERK1/2-dependent nuclear factor-κB and the increased level of Smad2 phosphorylation were observed in cardiac remolding model that were treated with sesamin. Furthermore, TAC induced alteration of Sirt3 and SOD2 was normalized by sesamin treatment. Finally, a selective Sirt3 inhibitor 3-TYP blocks all the protective role of sesamin, suggesting that a Sirt3-dependent effect of sesamin on cardiac remodeling.. Sesamin improves cardiac function and prevents the development of cardiac hypertrophy via Sirt3/ROS pathway. Our results suggest the protective effect of sesamin on cardiac remolding. Topics: Animals; Antioxidants; Cardiomegaly; Dioxoles; Fibrosis; Heart; Inflammation; Lignans; Male; MAP Kinase Signaling System; Mice; Myocardium; Oxidative Stress; Reactive Oxygen Species; Signal Transduction; Sirtuin 3 | 2017 |
Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3.
Honokiol (HKL) is a natural biphenolic compound derived from the bark of magnolia trees with anti-inflammatory, anti-oxidative, anti-tumour and neuroprotective properties. Here we show that HKL blocks agonist-induced and pressure overload-mediated, cardiac hypertrophic responses, and ameliorates pre-existing cardiac hypertrophy, in mice. Our data suggest that the anti-hypertrophic effects of HKL depend on activation of the deacetylase Sirt3. We demonstrate that HKL is present in mitochondria, enhances Sirt3 expression nearly twofold and suggest that HKL may bind to Sirt3 to further increase its activity. Increased Sirt3 activity is associated with reduced acetylation of mitochondrial Sirt3 substrates, MnSOD and oligomycin-sensitivity conferring protein (OSCP). HKL-treatment increases mitochondrial rate of oxygen consumption and reduces ROS synthesis in wild type, but not in Sirt3-KO cells. Moreover, HKL-treatment blocks cardiac fibroblast proliferation and differentiation to myofibroblasts in a Sirt3-dependent manner. These results suggest that HKL is a pharmacological activator of Sirt3 capable of blocking, and even reversing, the cardiac hypertrophic response. Topics: Acetylation; Adenosine Triphosphatases; Animals; Biphenyl Compounds; Cardiomegaly; Cardiotonic Agents; Carrier Proteins; Cell Differentiation; Cell Proliferation; Enzyme Activation; Fibroblasts; Gene Expression Regulation; Isoproterenol; Lignans; Membrane Proteins; Mice; Mitochondria; Mitochondrial Proton-Translocating ATPases; Myocardium; Myocytes, Cardiac; Myofibroblasts; Phenylephrine; Primary Cell Culture; Reactive Oxygen Species; Signal Transduction; Sirtuin 3; Superoxide Dismutase | 2015 |
Antihypertensive effect of sesamin. III. Protection against development and maintenance of hypertension in stroke-prone spontaneously hypertensive rats.
The antihypertensive effect of sesamin, a lignan from sesame oil, was examined using salt-loaded and unloaded stroke-prone spontaneously hypertensive rats (SHRSP). The animals at 6 weeks of age were separated into a salt-loaded group and an unloaded group. Salt-loaded animals were maintained on 1% NaCl drinking water. Each group was further divided into two groups: normal-diet group and sesamin-diet group. Systolic blood pressure of all animals was monitored once weekly. At the end of the feeding periods, cardiovascular hypertrophy and renal damage were evaluated. In the salt-loaded group, sesamin feeding significantly suppressed the development of hypertension, and efficient suppression was maintained from 9 to 26 weeks (e.g., 215+/-4 vs. 180+/-4 mmHg, at 17 weeks old). The left ventricle plus septum weight-to-body weight ratio was slightly but significantly lowered by sesamin feeding. When the degree of vascular hypertrophy of the aorta and superior mesenteric artery was histochemically evaluated, wall thickness and wall area of these vessels were significantly decreased by the sesamin feeding. Histological renal damage such as thickening of the tunica intima and fibrinoid degeneration of the arterial wall were often observed in the normal-diet group, but this damage was efficiently reduced in the sesamin-fed animals. On the other hand, in the salt-unloaded group, only a slight and nonsignificant suppressive effect of sesamin on the development of hypertension was observed. Although the wall area of the aorta was significantly decreased by the sesamin feeding, other vascular parameters were not ameliorated. The incidence of histological renal damage tended to decrease in sesamin-fed animals, but these alterations were not statistically significant. Thus, sesamin feeding was much more effective as an antihypertensive regimen in salt-loaded SHRSP than in unloaded SHRSP, thereby suggesting that sesamin is more useful as a prophylactic treatment in the malignant status of hypertension and/or hypertension followed by water and salt retention. Topics: Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Cardiomegaly; Cerebrovascular Disorders; Diet; Dioxoles; Heart Rate; Hypertension; Kidney; Kidney Diseases; Lignans; Male; Myocardium; Rats; Rats, Inbred SHR | 1998 |
Antihypertensive effect of sesamin. I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy.
We investigated the antihypertensive effect of sesamin, a lignan from sesame oil, using deoxycorticosterone acetate (DOCA)-salt hypertensive rats. The animals were unilaterally nephrectomized, and then separated into a sham-operated group (sham group) and a DOCA-salt-treated group. The latter was further separated into a normal diet group (control group) and a sesamin-containing diet group (sesamin group). The systolic blood pressure of control group progressively increased in comparison with that of sham group. This DOCA-salt-induced hypertension was markedly suppressed by feeding a sesamin-containing diet. Systolic blood pressure after 5 weeks was 130.6 +/- 1.9 mmHg in the sham group, 198.1 +/- 7.3 mmHg in the control group and 152.5 +/- 8.4 mmHg in the sesamin group, respectively. The treatment with DOCA and salt for 5 weeks significantly increased the weight of the left ventricle plus the septum. However, this increase was significantly suppressed in the sesamin group. When the degree of vascular hypertrophy of the aorta and superior mesenteric artery was histochemically evaluated, there were significant increases in wall thickness, wall area and the wall-to-lumen ratio in the control group, compared with the sham. Sesamin feeding ameliorated the development of DOCA-salt-induced vascular hypertrophy in both the aorta and mesenteric artery. These findings strongly suggest that sesamin is useful as a prophylactic treatment in the development of hypertension and cardiovascular hypertrophy. Topics: Animals; Antihypertensive Agents; Aorta, Thoracic; Blood Pressure; Cardiomegaly; Desoxycorticosterone; Diet; Dioxoles; Hypertension; Hypertrophy; Lignans; Male; Nephrectomy; Rats; Rats, Sprague-Dawley | 1995 |
Antihypertensive effect of sesamin. II. Protection against two-kidney, one-clip renal hypertension and cardiovascular hypertrophy.
We investigated the antihypertensive effect of sesamin, a lignan from sesame oil, using two-kidney, one-clip (2K,1C) renal hypertensive rats. After clipping the left renal artery, animals were assigned to either a normal diet group (control group) or a sesamin-containing (1% (w/w)) diet group (sesamin group). The sham-operated rats (sham group) were fed a normal diet and tap water. The systolic blood pressure of the control group increased progressively in comparison with the sham group. This 2K,1C-induced hypertension was markedly reduced by feeding the sesamin-containing diet. The systolic blood pressure after 4 weeks was 123.60 +/- 4.01 mmHg in the sham group, 187.43 +/- 5.69 mmHg in the control group and 145.57 +/- 6.78 mmHg in the sesamin group, respectively. There were significant increases in left ventricle plus septum weight-body weight ratio in the control group compared with the sham group. This rise was also significantly reduced in the sesamin group. When the thoracic aorta was histochemically evaluated, the wall thickness and wall-to-lumen ratio in the control group were significantly increased, compared with the sham group, indicating that vascular hypertrophy had occurred in the control group. The sesamin diet tended to ameliorate this vascular hypertrophy, although its effect was not statistically significant. These findings suggest that sesamin is useful as prophylactic treatment to combat the development of renal hypertension and cardiac hypertrophy. Topics: Animals; Antihypertensive Agents; Cardiomegaly; Dioxoles; Hypertension, Renovascular; Lignans; Male; Rats; Rats, Sprague-Dawley; Sesame Oil | 1995 |