lignans and Aortic-Diseases

lignans has been researched along with Aortic-Diseases* in 2 studies

Other Studies

2 other study(ies) available for lignans and Aortic-Diseases

ArticleYear
The α-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:6

    Dietary intake of industrially hydrogenated trans fatty acids (TFA) has been associated with coronary heart disease. Dietary flaxseed can inhibit atherosclerosis induced by dietary cholesterol. The aim of this study was to determine whether supplementing the diet with flaxseed could protect against atherosclerosis induced by a diet enriched in TFA. Low-density lipoprotein receptor-deficient (LDLr(-/-)) mice were fed 1 of 14 experimental diets for 14 wk containing one of two fat sources [regular (pork/soy) or trans fat] at two concentrations (4 or 8%) and supplemented with or without dietary cholesterol (2%), whole ground flaxseed, or one of the components of flaxseed [α-linolenic acid (ALA), defatted fiber, or lignan]. Adding flaxseed to the diet partially mitigated the rise in circulating cholesterol levels induced by the cholesterol-enriched diet. Atherosclerosis was stimulated by TFA and/or cholesterol. Including milled flaxseed to an atherogenic diet significantly reduced atherosclerosis compared with the groups that consumed cholesterol and/or TFA. ALA was the only component within flaxseed that could inhibit the atherogenic action of cholesterol and/or TFA on its own. Dietary flaxseed protects against atherosclerotic development induced by TFA and cholesterol feeding through its content of ALA.

    Topics: alpha-Linolenic Acid; Animals; Aortic Diseases; Atherosclerosis; Cholesterol, Dietary; Dietary Fats, Unsaturated; Dietary Fiber; Disease Models, Animal; Female; Flax; Lignans; Mice; Mice, Inbred C57BL; Mice, Knockout; Plant Preparations; Receptors, LDL; Seeds; Time Factors; Trans Fatty Acids; Triglycerides

2011
Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction.
    Arteriosclerosis, thrombosis, and vascular biology, 2010, Volume: 30, Issue:4

    Animal and clinical studies have suggested that polyphenols in fruits, red wine, and tea may delay the development of atherosclerosis through their antioxidant and anti-inflammatory properties. We investigated whether individual dietary polyphenols representing different polyphenolic classes, namely quercetin (flavonol), (-)-epicatechin (flavan-3-ol), theaflavin (dimeric catechin), sesamin (lignan), or chlorogenic acid (phenolic acid), reduce atherosclerotic lesion formation in the apolipoprotein E (ApoE)(-/-) gene-knockout mouse.. Quercetin and theaflavin (64-mg/kg body mass daily) significantly attenuated atherosclerotic lesion size in the aortic sinus and thoracic aorta (P<0.05 versus ApoE(-/-) control mice). Quercetin significantly reduced aortic F(2)-isoprostane, vascular superoxide, vascular leukotriene B(4), and plasma-sP-selectin concentrations; and augmented vascular endothelial NO synthase activity, heme oxygenase-1 protein, and urinary nitrate excretion (P<0.05 versus control ApoE(-/-) mice). Theaflavin showed similar, although less extensive, significant effects. Although (-)-epicatechin significantly reduced F(2)-isoprostane, superoxide, and endothelin-1 production (P<0.05 versus control ApoE(-/-) mice), it had no significant effect on lesion size. Sesamin and chlorogenic acid treatments exerted no significant effects. Quercetin, but not (-)-epicatechin, significantly increased the expression of heme oxygenase-1 protein in lesions versus ApoE(-/-) controls.. Specific dietary polyphenols, in particular quercetin and theaflavin, may attenuate atherosclerosis in ApoE(-/-) gene-knockout mice by alleviating inflammation, improving NO bioavailability, and inducing heme oxygenase-1. These data suggest that the cardiovascular protection associated with diets rich in fruits, vegetables, and some beverages may in part be the result of flavonoids, such as quercetin.

    Topics: Animals; Anti-Inflammatory Agents; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Biflavonoids; Biomarkers; Catechin; Chlorogenic Acid; Cholesterol; Diet; Dioxoles; Disease Models, Animal; Endothelin-1; Endothelium, Vascular; F2-Isoprostanes; Fatty Acids; Flavonoids; Heme Oxygenase-1; Inflammation; Leukotriene B4; Lignans; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitrates; Nitric Oxide; Nitric Oxide Synthase Type III; Nitrites; Oxidative Stress; P-Selectin; Phenols; Polyphenols; Quercetin; Superoxides

2010