lignans and Albuminuria

lignans has been researched along with Albuminuria* in 2 studies

Other Studies

2 other study(ies) available for lignans and Albuminuria

ArticleYear
Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes.
    Scientific reports, 2020, 05-21, Volume: 10, Issue:1

    More effective treatments for diabetic nephropathy remain a major unmet clinical need. Increased oxidative stress is one of the most important pathological mechanisms that lead to kidney damage and functional impairment induced by diabetes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase and critically regulates cellular reactive oxygen species (ROS) production and detoxification. Honokiol is a natural biphenolic compound that, by activating mitochondrial SIRT3, can carry out anti-oxidant, anti-inflammatory and anti-fibrotic activities. Here, we sought to investigate the renoprotective effects of honokiol in BTBR ob/ob mice with type 2 diabetes. Diabetic mice were treated with vehicle or honokiol between the ages of 8 and 14 weeks. Wild-type mice served as controls. Renal Sirt3 expression was significantly reduced in BTBR ob/ob mice, and this was associated with a reduction in its activity and increased ROS levels. Selective activation of SIRT3 through honokiol administration translated into the attenuation of albuminuria, amelioration of glomerular damage, and a reduction in podocyte injury. SIRT3 activation preserved mitochondrial wellness through the activation of SOD2 and the restoration of PGC-1α expression in glomerular cells. Additionally, the protective role of SIRT3 in glomerular changes was associated with enhanced tubular Sirt3 expression and upregulated renal Nampt levels, indicating a possible tubule-glomerulus retrograde interplay, which resulted in improved glomerular SIRT3 activity. Our results demonstrate the hitherto unknown renoprotective effect of SIRT3 against diabetic glomerular disease and suggest that the pharmacological modulation of SIRT3 activity is a possible novel approach to treating diabetic nephropathy.

    Topics: Albuminuria; Animals; Anti-Inflammatory Agents; Antioxidants; Biphenyl Compounds; Cytokines; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Kidney Glomerulus; Lignans; Male; Mice; Mice, Obese; Mitochondria; Nicotinamide Phosphoribosyltransferase; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Podocytes; Reactive Oxygen Species; Sirtuin 3; Superoxide Dismutase

2020
Protective effects of Eucommia lignans against hypertensive renal injury by inhibiting expression of aldose reductase.
    Journal of ethnopharmacology, 2012, Jan-31, Volume: 139, Issue:2

    To investigate the protective effects and the underlying mechanism of Eucommia lignans against hypertensive renal injury.. Ten-week-old Wistar Kyoto rats and age matched spontaneously hypertension rats were used in the study. The SHR were randomly divided into 4 groups (n=7 for each group) and received different treatment for 16 weeks, which including saline, Captopril, Epalrestat and Eucommia lignans, respectively. System blood pressures of the rats were monitored once every 4 weeks. N-Acetyl-β-D-glucosaminidase (NAG) activity and the ratio of albumin and urinary creatinine were chosen as the indices of kidney function. Then the structure and renal collagen type III expression of glomerular basement membrane were observed by microscopy and the renal aldose reductase (AR) expression was measured by immunohistochemistry. In vitro, the proliferation of mesangial cells induced by AngII was assayed by MTT, and the mRNA expression of AR was measured by RT-real-time PCR.. The renal function, evaluated by NAG enzyme activity and the ratio of albumin to urinary creatinine, was significantly ameliorated by Eucommia lignans treatment. Meanwhile, Eucommia lignans decreased both the protein (P<0.05) and the mRNA expressed lever of AR (P<0.05). Eucommia lignans also decreased the high expression of collagen type III in SHR (P<0.05) and inhibited the proliferation of renal mesangial cells induced by AngII (P<0.05).. Eucommia lignans have protective effects against hypertensive renal injury, and the protective effects may be partly due to inhibition of aldose reductase.

    Topics: Acetylglucosaminidase; Albuminuria; Aldehyde Reductase; Animals; Antihypertensive Agents; Biomarkers; Blood Pressure; Cell Proliferation; Cells, Cultured; Collagen Type III; Creatinine; Disease Models, Animal; Down-Regulation; Enzyme Inhibitors; Eucommiaceae; Glomerular Basement Membrane; Hypertension; Immunohistochemistry; Kidney; Kidney Diseases; Lignans; Male; Plant Extracts; Plants, Medicinal; Rats; Rats, Inbred SHR; Rats, Inbred WKY; RNA, Messenger; Time Factors

2012