lfm-a13 and Multiple-Myeloma

lfm-a13 has been researched along with Multiple-Myeloma* in 2 studies

Other Studies

2 other study(ies) available for lfm-a13 and Multiple-Myeloma

ArticleYear
Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease.
    American journal of hematology, 2013, Volume: 88, Issue:6

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. Am. J. Hematol. 88:463-471, 2013. © 2013 Wiley Periodicals, Inc.

    Topics: Agammaglobulinaemia Tyrosine Kinase; Amides; Animals; Bone Diseases; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Chemokine CXCL12; Humans; Mice; Mice, SCID; Multiple Myeloma; Nitriles; Osteoclasts; Protein-Tyrosine Kinases; Receptors, CXCR4; RNA, Small Interfering; Signal Transduction

2013
BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB.
    Cellular signalling, 2013, Volume: 25, Issue:1

    Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIP(L) and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Amides; Antineoplastic Agents; Boronic Acids; Bortezomib; Caspases; Cell Survival; Humans; I-kappa B Proteins; Lenalidomide; Multiple Myeloma; NF-kappa B; NF-KappaB Inhibitor alpha; Nitriles; Phosphorylation; Piperidines; Protein-Tyrosine Kinases; Pyrazines; Pyrazoles; Pyrimidines; RNA, Messenger; Signal Transduction; Thalidomide; Tumor Cells, Cultured

2013