lewis-y-antigen has been researched along with Hemolysis* in 2 studies
2 other study(ies) available for lewis-y-antigen and Hemolysis
Article | Year |
---|---|
Listeriolysin O as cytotoxic component of an immunotoxin.
Monoclonal antibodies (mAbs) have been developed over the past years as promising anticancer therapeutics. The conjugation of tumor specific mAbs with cytotoxic molecules has been shown to improve their efficacy dramatically. These bifunctional immunotoxins, consisting of covalently linked antibodies and protein toxins, possess considerable potential in cancer therapy. Many of them are under investigation in clinical trials. As a result of general interest in new toxic components, we describe here the suitability of the bacterial protein Listeriolysin O (LLO) as cytotoxic component of an immunotoxin. Unique characteristics of LLO, such as its acidic pH optimum and the possibility to regulate the cytolytic activity by cysteine-oxidation, make LLO an interesting toxophore. Oxidized LLO shows a substantially decreased cytolytic activity when compared with the reduced protein as analyzed by hemolysis. Both oxidized and reduced LLO exhibit a cell-type-unspecific toxicity in cell culture with a significantly higher toxicity of reduced LLO. For cell-type-specific targeting of LLO to tumor cells, LLO was coupled to the dsFv fragment of the monoclonal antibody B3, which recognizes the tumor-antigen Lewis Y. The coupling of LLO to dsFv-B3 was performed via cysteine-containing polyionic fusion peptides that act as a specific heterodimerization motif. The novel immunotoxin B3-LLO could be shown to specifically eliminate antigen positive MCF7 cells with an EC(50) value of 2.3 nM, whereas antigen negative cell lines were 80- to 250-fold less sensitive towards B3-LLO. Topics: Antibodies, Monoclonal; Bacterial Toxins; Cell Line, Tumor; Cloning, Molecular; Cytotoxicity, Immunologic; Heat-Shock Proteins; Hemolysin Proteins; Hemolysis; Humans; Immunotoxins; Lewis Blood Group Antigens; Protein Conformation; Recombinant Proteins | 2009 |
Characterization of a streptococcal cholesterol-dependent cytolysin with a lewis y and b specific lectin domain.
The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that often exhibit distinct structural changes that modify their pore-forming activity. A soluble platelet aggregation factor from Streptococcus mitis (Sm-hPAF) was characterized and shown to be a functional CDC with an amino-terminal fucose-binding lectin domain. Sm-hPAF, or lectinolysin (LLY) as renamed herein, is most closely related to CDCs from Streptococcus intermedius (ILY) and Streptococcus pneumoniae (pneumolysin or PLY). The LLY gene was identified in strains of S. mitis, S. pneumoniae, and Streptococcus pseudopneumoniae. LLY induces pore-dependent changes in the light scattering properties of the platelets that mimic those induced by platelet aggregation but does not induce platelet aggregation. LLY monomers form the typical large homooligomeric membrane pore complex observed for the CDCs. The pore-forming activity of LLY on platelets is modulated by the amino-terminal lectin domain, a structure that is not present in other CDCs. Glycan microarray analysis showed the lectin domain is specific for difucosylated glycans within Lewis b (Le (b)) and Lewis y (Le (y)) antigens. The glycan-binding site is occluded in the soluble monomer of LLY but is apparently exposed after cell binding, since it significantly increases LLY pore-forming activity in a glycan-dependent manner. Hence, LLY represents a new class of CDC whose pore-forming mechanism is modulated by a glycan-binding domain. Topics: Amino Acid Sequence; Cholesterol; Cytotoxins; Fluoresceins; Genes, Bacterial; Hemolysis; Humans; Lectins; Lewis Blood Group Antigens; Models, Molecular; Molecular Sequence Data; Oligosaccharides; Platelet Aggregation; Polysaccharides; Protein Structure, Secondary; Protein Structure, Tertiary; Streptococcus | 2008 |