leupeptins and Malaria--Falciparum

leupeptins has been researched along with Malaria--Falciparum* in 3 studies

Other Studies

3 other study(ies) available for leupeptins and Malaria--Falciparum

ArticleYear
Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite.
    Cell death & disease, 2015, Jul-02, Volume: 6

    A regulated protein turnover machinery in the cell is essential for effective cellular homeostasis; any interference with this system induces cellular stress and alters the normal functioning of proteins important for cell survival. In this study, we show that persistent cellular stress and organelle dysfunction because of disruption of cellular homeostasis in human malaria parasite Plasmodium falciparum, leads to apoptosis-like cell death. Quantitative global proteomic analysis of the stressed parasites before onset of cell death, showed upregulation of a number of proteins involved in cellular homeostasis; protein network analyses identified upregulated metabolic pathways that may be associated with stress tolerance and pro-survival mechanism. However, persistent stress on parasites cause structural abnormalities in endoplasmic reticulum and mitochondria, subsequently a cascade of reactions are initiated in parasites including rise in cytosolic calcium levels, loss of mitochondrial membrane potential and activation of VAD-FMK-binding proteases. We further show that activation of VAD-FMK-binding proteases in the parasites leads to degradation of phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), a known target of metacaspases, as well as degradation of other components of spliceosomal complex. Loss of spliceosomal machinery impairs the mRNA splicing, leading to accumulation of unprocessed RNAs in the parasite and thus dysregulate vital cellular functions, which in turn leads to execution of apoptosis-like cell death. Our results establish one of the possible mechanisms of instigation of cell death by organelle stress in Plasmodium.

    Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Cell Line; Cysteine Proteases; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Enzyme Activation; Homeostasis; Humans; Leupeptins; Malaria, Falciparum; Membrane Potential, Mitochondrial; Mitochondria; Plasmodium falciparum; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protozoan Proteins; RNA Splicing

2015
Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:12

    Hemoglobin (Hb) degradation is essential for the growth of the intraerythrocytic stages of malarial parasites. This process, which occurs inside an acidic digestive vacuole (DV), is thought to involve the action of four aspartic proteases, termed plasmepsins (PMs). These enzymes have received considerable attention as potential antimalarial drug targets. Leveraging the availability of a set of PM-knockout lines generated in Plasmodium falciparum, we report here that a wide range of previously characterized or novel aspartic protease inhibitors exert their antimalarial activities independently of their effect on the DV PMs. We also assayed compounds previously shown to inhibit cysteine proteases residing in the DV. The most striking observation was a ninefold increase in the potency of the calpain inhibitor N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) against parasites lacking all four DV PMs. Genetic ablation of PM III or PM IV also decreased the level of parasite resistance to the beta-hematin binding antimalarial chloroquine. On the basis of the findings of drug susceptibility and isobologram assays, as well as the findings of studies of the inhibition of Hb degradation, morphological analyses, and stage specificity, we conclude that the DV PMs and falcipain cysteine proteases act cooperatively in Hb hydrolysis. We also identify several aspartic protease inhibitors, designed to target DV PMs, which appear to act on alternative targets early in the intraerythrocytic life cycle. These include the potent diphenylurea compound GB-III-32, which was found to be fourfold less potent against a P. falciparum line overexpressing plasmepsin X than against the parental nontransformed parasite line. The identification of the mode of action of these inhibitors will be important for future antimalarial drug discovery efforts focusing on aspartic proteases.

    Topics: Animals; Antimalarials; Aspartic Acid Endopeptidases; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Hemoglobins; Hydrolysis; Leupeptins; Malaria, Falciparum; Parasitic Sensitivity Tests; Plasmodium falciparum; Protease Inhibitors

2009
Changes in the plasmodial surface anion channel reduce leupeptin uptake and can confer drug resistance in Plasmodium falciparum-infected erythrocytes.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:7

    Cysteine protease inhibitors kill malaria parasites and are being pursued for development as antimalarial agents. Because they have multiple targets within bloodstream-stage parasites, workers have assumed that resistance to these inhibitors would not be acquired easily. In the present study, we used in vitro selection to generate a parasite resistant to growth inhibition by leupeptin, a broad-profile cysteine and serine protease inhibitor. Resistance was not associated with upregulation of cysteine protease activity, reduced leupeptin sensitivity of this activity, or expression level changes for putative cysteine or serine proteases in the parasite genome. Instead, it was associated with marked changes in the plasmodial surface anion channel (PSAC), an ion channel on infected erythrocytes that functions in nutrient and bulky organic solute uptake. Osmotic fragility measurements, electrophysiological recordings, and leupeptin uptake studies revealed selective reductions in organic solute permeability via PSAC, altered single-channel gating, and reduced inhibitor affinity. These changes yielded significantly reduced leupeptin uptake and could fully account for the acquired resistance. PSAC represents a novel route for the uptake of bulky hydrophilic compounds acting against intraerythrocytic parasite targets. Drug development based on such compounds should proceed cautiously in light of possible resistance development though the selection of PSAC mutants.

    Topics: Animals; Antimalarials; Biological Transport, Active; Cell Membrane Permeability; Cysteine Proteinase Inhibitors; Drug Resistance; Erythrocytes; Genes, Protozoan; Humans; In Vitro Techniques; Ion Channels; Leupeptins; Malaria, Falciparum; Plasmodium falciparum; Protozoan Proteins

2008