leupeptins has been researched along with Leukemia--Myelogenous--Chronic--BCR-ABL-Positive* in 7 studies
7 other study(ies) available for leupeptins and Leukemia--Myelogenous--Chronic--BCR-ABL-Positive
Article | Year |
---|---|
Involvement of MCL1, c-myc, and cyclin D2 protein degradation in ponatinib-induced cytotoxicity against T315I(+) Ph+leukemia cells.
T315I mutation found in chronic myelogenous leukemia (CML) and Ph + ALL patients is the most serious one among resistance against BCR/ABL kinase inhibitors including imatinib and is only responsive to ponatinib (PNT). However, the novel strategy is required to reduce life-threatening adverse effects of PNT including ischemic cardiovascular disease. We examined the mechanism of PNT-induced cytotoxicity against a T315I(+) Ph + ALL cell line, TccY/Sr. PNT induced apoptosis (increased sub G1 cells, and cleaved caspase3 and PARP), and suppressed protein expression of MCL1, cyclin D2 and c-myc, which were reversed by a proteasome inhibitor, MG132, suggesting enhanced proteasomal degradation by PNT. Among BCL2 family inhibitors, MCL1 inhibitors (maritoclax and AZD5991) robustly induced cell death, showing the MCL1-dependent survival of TccY/Sr cells. Decreased MCL1 and c-myc expression by PNT was also observed in T315I(+) MEGA2/STIR cells. PNT suppressed PI3K activation followed by AKT inhibition and GSK3 dephosphorylation. PI3K/AKT inhibitors mimicked PNT, suggesting that PI3K/AKT signaling is important for survival of TccY/Sr cells. Moreover, GSK3 inhibitor (SB216763) reduced PNT-induced cytotoxicity and degradation of c-myc and MCL1. AZD5991 exhibited the synergistic action with PNT, anti-cancer drugs and venetoclax (BCL2 inhibitor), suggesting the utility of MCL1 inhibitor alone or in combination as a future clinical option for Ph + leukemia patients. Topics: Antineoplastic Agents; Cell Death; Cell Line, Tumor; Cyclin D2; Drug Resistance, Neoplasm; Drug Synergism; Glycogen Synthase Kinase 3; Humans; Imatinib Mesylate; Imidazoles; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Macrocyclic Compounds; Myeloid Cell Leukemia Sequence 1 Protein; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Protein Phosphatase 2; Proteolysis; Proto-Oncogene Proteins c-bcl-2; Proto-Oncogene Proteins c-myc; Pyridazines; Pyrroles; Signal Transduction; Wortmannin | 2020 |
Reactive oxygen species regulate nucleostemin oligomerization and protein degradation.
Nucleostemin (NS) is a nucleolar-nucleoplasmic shuttle protein that regulates cell proliferation, binds p53 and Mdm2, and is highly expressed in tumor cells. We have identified NS as a target of oxidative regulation in transformed hematopoietic cells. NS oligomerization occurs in HL-60 leukemic cells and Raji B lymphoblasts that express high levels of c-Myc and have high intrinsic levels of reactive oxygen species (ROS); reducing agents dissociate NS into monomers and dimers. Exposure of U2OS osteosarcoma cells with low levels of intrinsic ROS to hydrogen peroxide (H(2)O(2)) induces thiol-reversible disulfide bond-mediated oligomerization of NS. Increased exposure to H(2)O(2) impairs NS degradation, immobilizes the protein within the nucleolus, and results in detergent-insoluble NS. The regulation of NS by ROS was validated in a murine lymphoma tumor model in which c-Myc is overexpressed and in CD34+ cells from patients with chronic myelogenous leukemia in blast crisis. In both instances, increased ROS levels were associated with markedly increased expression of NS protein and thiol-reversible oligomerization. Site-directed mutagenesis of critical cysteine-containing regions of nucleostemin altered both its intracellular localization and its stability. MG132, a potent proteasome inhibitor and activator of ROS, markedly decreased degradation and increased nucleolar retention of NS mutants, whereas N-acetyl-L-cysteine largely prevented the effects of MG132. These results indicate that NS is a highly redox-sensitive protein. Increased intracellular ROS levels, such as those that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS to oligomerize, prevent its degradation, and may alter its ability to regulate cell proliferation. Topics: Acetylcysteine; Animals; Blast Crisis; Carrier Proteins; Cell Proliferation; Cell Transformation, Neoplastic; Cysteine Proteinase Inhibitors; Free Radical Scavengers; Gene Expression Regulation, Leukemic; GTP-Binding Proteins; HL-60 Cells; Humans; Hydrogen Peroxide; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Lymphoma; Mice; Mice, Transgenic; Mutagenesis, Site-Directed; Neoplasms, Experimental; Nuclear Proteins; Oxidants; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Multimerization; Proto-Oncogene Proteins c-myc; RNA-Binding Proteins | 2011 |
Low-level expression of proapoptotic Bcl-2-interacting mediator in leukemic cells in patients with chronic myeloid leukemia: role of BCR/ABL, characterization of underlying signaling pathways, and reexpression by novel pharmacologic compounds.
Chronic myeloid leukemia (CML) is a myeloproliferative disease in which BCR/ABL enhances survival of leukemic cells through modulation of proapoptotic and antiapoptotic molecules. Recent data suggest that proapoptotic Bcl-2-interacting mediator (Bim) plays a role as a tumor suppressor in myeloid cells, and that leukemic cells express only low amounts of this cell death activator. We here show that primary CML cells express significantly lower amounts of bim mRNA and Bim protein compared with normal cells. The BCR/ABL inhibitors imatinib and AMN107 were found to promote expression of Bim in CML cells. To provide direct evidence for the role of BCR/ABL in Bim modulation, we employed Ba/F3 cells with doxycycline-inducible expression of BCR/ABL and found that BCR/ABL decreases expression of bim mRNA and Bim protein in these cells. The BCR/ABL-induced decrease in expression of Bim was found to be a posttranscriptional event that depended on signaling through the mitogen-activated protein kinase pathway and was abrogated by the proteasome inhibitor MG132. Interestingly, MG132 up-regulated the expression of bim mRNA and Bim protein and suppressed the growth of Ba/F3 cells containing wild-type BCR/ABL or imatinib-resistant mutants of BCR/ABL. To show functional significance of "Bim reexpression," a Bim-specific small interfering RNA was applied and found to rescue BCR/ABL-transformed leukemic cells from imatinib-induced cell death. In summary, our data identify BCR/ABL as a Bim suppressor in CML cells and suggest that reexpression of Bim by novel tyrosine kinase inhibitors, proteasome inhibition, or by targeting signaling pathways downstream of BCR/ABL may be an attractive therapeutic approach in imatinib-resistant CML. Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Benzamides; Bone Marrow Cells; Cell Growth Processes; Down-Regulation; Extracellular Signal-Regulated MAP Kinases; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; MAP Kinase Signaling System; Membrane Proteins; Piperazines; Proteasome Endopeptidase Complex; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Pyrimidines; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Transfection | 2005 |
TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) have been implicated in antitumor immunity and therapy. In the present study, we investigated the sensitivity of Philadelphia chromosome (Ph1)-positive leukemia cell lines to TRAIL- or FasL-induced cell death to explore the possible contribution of these molecules to immunotherapy against Ph1-positive leukemias. TRAIL, but not FasL, effectively induced apoptotic cell death in most of 5 chronic myelogenous leukemia-derived and 7 acute leukemia-derived Ph1-positive cell lines. The sensitivity to TRAIL was correlated with cell-surface expression of death-inducing receptors DR4 and/or DR5. The TRAIL-induced cell death was caspase-dependent and enhanced by nuclear factor kappa B inhibitors. Moreover, primary leukemia cells from Ph1-positive acute lymphoblastic leukemia patients were also sensitive to TRAIL, but not to FasL, depending on DR4/DR5 expression. Fas-associated death domain protein (FADD) and caspase-8, components of death-inducing signaling complex (DISC), as well as FLIP (FLICE [Fas-associating protein with death domain-like interleukin-1-converting enzyme]/caspase-8 inhibitory protein), a negative regulator of caspase-8, were expressed ubiquitously in Ph1-positive leukemia cell lines irrespective of their differential sensitivities to TRAIL and FasL. Notably, TRAIL could induce cell death in the Ph1-positive leukemia cell lines that were refractory to a BCR-ABL-specific tyrosine kinase inhibitor imatinib mesylate (STI571; Novartis Pharma, Basel, Switzerland). These results suggested the potential utility of recombinant TRAIL as a novel therapeutic agent and the possible contribution of endogenously expressed TRAIL to immunotherapy against Ph1-positive leukemias. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Apoptosis Regulatory Proteins; Arabidopsis Proteins; Benzamides; Carrier Proteins; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspase 1; Death Domain Receptor Signaling Adaptor Proteins; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Fas Ligand Protein; Fatty Acid Desaturases; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Intracellular Signaling Peptides and Proteins; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Membrane Glycoproteins; Neoplasm Proteins; Neoplastic Stem Cells; NF-kappa B; Peptides; Piperazines; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Pyrimidines; Receptors, TNF-Related Apoptosis-Inducing Ligand; Receptors, Tumor Necrosis Factor; Recombinant Proteins; TNF-Related Apoptosis-Inducing Ligand; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2003 |
Jak2 is involved in c-Myc induction by Bcr-Abl.
We have previously shown that the Jak2 tyrosine kinase is activated in Bcr-Abl positive cell lines and blood cells from CML blast crisis patients by tyrosine phosphorylation. We are searching for downstream targets of Jak2 in Bcr-Abl positive cells. It is known that c-Myc expression is required for the oncogenic effects of Bcr-Abl, and that over-expression of c-Myc complements the transformation defect of the Bcr-Abl SH2 deletion mutant. Moreover, the Bcr-Abl SH2 deletion mutant and an Abl C-terminal deletion mutant are deficient in activating c-Myc expression. Since the Jak2 binds to the C-terminal domain of Bcr-Abl and optimal Jak2 activation requires the SH2 domain, we tested whether Jak2 was involved in c-Myc protein induction by Bcr-Abl. We treated the 32Dp210 Bcr-Abl cells with the Jak2 specific tyrosine kinase inhibitor, AG490, and found that this drug, like the Abl tyrosine kinase inhibitor STI-571, inhibited c-Myc protein induction by Bcr-Abl. Treatment of 32Dp210 Bcr-Abl cells with AG490 also inhibited c-MYC RNA expression. It is also known that c-Myc protein is a labile protein that is increased in amounts in response to various growth factors by a mechanism not involving new Myc protein formation. Treatment of 32Dp210 Bcr-Abl cells with both the proteasome inhibitor MG132 and AG490 blocked the reduction of the c-Myc protein observed by AG490 alone. An adaptor protein SH2-Bbeta is involved in the enhancement of the tyrosine kinase activity of Jak2 following ligand/receptor interaction. In this regard we showed that the Jak2/Bcr-Abl complex contains SH2-Bbeta. Expression of the SH2-Bbeta R555E mutant in 32Dp210 Bcr-Abl cells reduced c-Myc expression about 40% compared to a vector control. Interestingly, we found the reduction of the c-Myc protein in several clones of dominant-negative (DN) Jak2 expressing K562 cells correlated very well with the reduction of tumor growth of these cells in nude mice as compared to vector transfected K562 cells. Both STI-571 and AG490 also induced apoptosis in 32Dp210 cells. Of interest, IL-3 containing medium reversed the STI-571 induced apoptosis of 32Dp210 cells but did not reverse the induction of apoptosis by AG490, which strongly supports the specificity of the inhibitory effects of AG490 on the Jak2 tyrosine kinase. In summary, our findings indicate that Jak2 mediates the increase in c-Myc expression that is induced by Bcr-Abl. Our results indicate that activated Jak2 not only mediates an increase of c-MYC Topics: Adaptor Proteins, Signal Transducing; Carrier Proteins; Cell Line; Fusion Proteins, bcr-abl; Gene Expression Regulation; Genes, myc; Humans; Janus Kinase 2; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Mutagenesis; Protein Structure, Tertiary; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; RNA, Messenger; STAT5 Transcription Factor; Transcription Factors; Tumor Cells, Cultured; Tyrphostins; Xenopus Proteins | 2002 |
Proteasome inhibition leads to significant reduction of Bcr-Abl expression and subsequent induction of apoptosis in K562 human chronic myelogenous leukemia cells.
The chimeric oncogene bcr-abl is detected in virtually every case of chronic myelogenous leukemia. It has been shown that cells (such as K562) expressing Bcr-Abl/p210, a protein tyrosine kinase, not only undergo cellular transformation but also demonstrate multiple drug resistance. Recent studies also demonstrate that the proteasome is involved in the survival signaling pathway(s). In the current study, we tested the hypothesis that the proteasome might play a role in regulating Bcr-Abl function. We have demonstrated by using a variety of inhibitors that inhibition of the proteasome, but not of the cysteine protease, activity is able to activate the apoptotic cell death program in K562 cells. Proteasome inhibition-induced apoptosis is demonstrated by condensation and fragmentation of nuclei, appearance of an apoptotic population with sub-G1 DNA content, the internucleosomal fragmentation of DNA, and cleavage of poly(ADP-ribose) polymerase, and can be blocked by a specific caspase-3-like tetrapeptide inhibitor. Western blot analysis with specific antibodies to c-Abl and Bcr proteins show that treatment of K562 cells with a proteasome inhibitor results in significant reduction of Bcr-Abl protein expression, which occurs several hours before the onset of apoptotic execution. Levels of c-Abl/p145 and Bcr/p160 proteins, however, remain essentially unaltered at that time. Furthermore, reduced Bcr-Abl expression is reflected in significantly attenuated Bcr-Abl-mediated protein tyrosine phosphorylation. Taken together, these results indicate that proteasome inhibition is sufficient to inactivate Bcr-Abl function and subsequently activate the apoptotic death program in cells that are resistant to apoptosis induced by chemotherapy. Topics: Apoptosis; Blotting, Western; Caspases; Cell Nucleus; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA Fragmentation; Enzyme Activation; Flow Cytometry; Fusion Proteins, bcr-abl; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Multienzyme Complexes; Proteasome Endopeptidase Complex; Protein-Tyrosine Kinases; Tumor Cells, Cultured | 1999 |
Differential phosphorylation in normal and leukemic granulocytes in response to phorbol 12-myristate 13-acetate.
Granulocytes from the peripheral blood of patients with chronic myeloid leukemia (CML) exhibit a number of functional defects. To explore the relationship of these aberrations to signal transduction, granulocytes from normal subjects and CML patients were labelled with 32Pi, stimulated with phorbol myristate acetate (PMA) and the phosphoproteins (Pps) in the unstimulated and stimulated cells analyzed by 2D-SDS-PAGE followed by autoradiography. Results show that there are six distinct reproducibly phosphorylated proteins referred to as Pp1-Pp6 identifiable in the basal patterns of the resting granulocytes. Amongst these, Pp1 and Pp5 are more intensely phosphorylated and Pp3 is very faint or absent in unstimulated CML cells, relative to the normal granulocytes. On stimulation of normal cells with PMA, Pp1, Pp3, Pp4 and Pp6 exhibit distinct patterns of phosphorylation-dephosphorylation. In the CML cells, however, Pp1 and Pp4 are unresponsive to PMA. We conclude that PKC-mediated functions involving Pp1, Pp3 and Pp4 are most probably defective in CML cells. Topics: Autoradiography; Electrophoresis, Gel, Two-Dimensional; Granulocytes; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Neoplasm Proteins; Phosphoproteins; Phosphorylation; Tetradecanoylphorbol Acetate | 1994 |