leupeptins and Ischemia

leupeptins has been researched along with Ischemia* in 8 studies

Other Studies

8 other study(ies) available for leupeptins and Ischemia

ArticleYear
Efficacy of leupeptin in treating ischemia in a rat hind limb model.
    Physiological reports, 2022, Volume: 10, Issue:15

    Prolonged tourniquet use can lead to tissue ischemia and can cause progressive muscle and nerve injuries. Such injuries are accompanied by calpain activation and subsequent Wallerian-like degeneration. Several known inhibitors, including leupeptin, are known to impede the activity of calpain and associated tissue damage. We hypothesize that employment of leupeptin in a rat model of prolonged hind limb ischemia can mitigate muscle and nerve injuries. Sprague-Dawley rats (n = 10) weighing between 300-400 g were employed in this study. Their left hind limbs were subjected to blood flow occlusion for a period of 2-h using a neonatal blood pressure cuff. Five rats were given twice weekly intramuscular leupeptin injections, while the other five received saline. After 2 weeks, the animals were euthanized, their sciatic nerves and gastrocnemius muscles were harvested, fixed, stained, and analyzed using NIH Image J software. The administration of leupeptin resulted in larger gastrocnemius muscle fiber cross-sectional areas for the right (non-tourniquet applied) hindlimb as compared to that treated with the saline (p = 0.0110). However, no statistically significant differences were found between these two groups for the injured left hindlimb (p = 0.1440). With regards to the sciatic nerve cross-sectional areas and sciatic functional index, no differences were detected between the leupeptin and control treated groups for both the healthy and injured hindlimbs. This research provides new insights on how to employ leupeptin to inhibit the degenerative effects of calpain and preserve tissues following ischemia resulting from orthopedic or plastic surgery procedures.

    Topics: Animals; Calpain; Hindlimb; Ischemia; Leupeptins; Muscle, Skeletal; Rats; Rats, Sprague-Dawley

2022
Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die.
    Cell death and differentiation, 2017, Volume: 24, Issue:2

    The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.

    Topics: Acetylcysteine; Adenine; AMP-Activated Protein Kinases; Animals; Autophagy; Autophagy-Related Protein-1 Homolog; Beclin-1; Cells, Cultured; Hippocampus; Ischemia; Leupeptins; Lysosomes; Male; Microtubule-Associated Proteins; Neurons; Phosphorylation; Rats; RNA Interference; Sirolimus; TOR Serine-Threonine Kinases

2017
A novel calpain inhibitor for treatment of transient retinal ischemia in the rat.
    Neuroreport, 2011, Sep-14, Volume: 22, Issue:13

    After an acute ischemia/reperfusion of the rat retina, the activation of cytotoxic proteases, including calpain, results in necrosis and apoptosis of retinal ganglion cells resulting in their degeneration. Using a systemically administered calpain inhibitor that crosses the blood-retinal barrier would provide for novel systemic intervention that protects the retina from acute injury and loss of function. Herein, we study a novel calpain peptide inhibitor, cysteic-leucyl-argininal (CYLA), in an in-vivo rat model of retinal ischemia to determine functional protection using electroretinography. The CYLA prodrug was administered intraperitoneally before and/or after ischemia-reperfusion at concentrations of 20-40 mg/kg. We found that administering 20 mg/kg of CYLA only after ischemia provides significant preservation of retinal function.

    Topics: Animals; Calpain; Ischemia; Leupeptins; Male; Rats; Rats, Sprague-Dawley; Retinal Diseases; Retinal Vessels

2011
Zn2+ mediates ischemia-induced impairment of the ubiquitin-proteasome system in the rat hippocampus.
    Journal of neurochemistry, 2009, Volume: 111, Issue:5

    Abstract Deposition of ubiquitinated protein aggregates is a hallmark of neurodegeneration in both acute neural injuries, such as stroke, and chronic conditions, such as Parkinson's disease, but the underlying mechanisms are poorly understood. In the present study, we examined the role of Zn2+ in ischemia-induced impairment of the ubiquitin-proteasome system in the CA1 region of rat hippocampus after transient global ischemia. We found that scavenging endogenous Zn2+ reduced ischemia-induced ubiquitin conjugation and free ubiquitin depletion. Furthermore, exposure to zinc chloride increased ubiquitination and inhibited proteasomal enzyme activity in cultured hippocampal neurons in a concentration- and time-dependent manner. Further studies of the underlying mechanisms showed that Zn(2+)-induced ubiquitination required p38 activation. These findings indicate that alterations in Zn2+ homeostasis impair the protein degradation pathway.

    Topics: Actins; Animals; CA1 Region, Hippocampal; Cells, Cultured; Chelating Agents; Coumarins; Disease Models, Animal; Dose-Response Relationship, Drug; Edetic Acid; Embryo, Mammalian; Enzyme Inhibitors; Fluorescent Dyes; Green Fluorescent Proteins; Imidazoles; Ischemia; Leupeptins; Male; Microtubule-Associated Proteins; Neurons; Oligopeptides; p38 Mitogen-Activated Protein Kinases; Proteasome Endopeptidase Complex; Pyrimidines; Rats; Rats, Sprague-Dawley; Statistics, Nonparametric; Time Factors; Transfection; Ubiquitin; Zinc

2009
Ischemia promotes calpain-mediated degradation of p120-catenin in SH-SY5Y cells.
    Biochemical and biophysical research communications, 2007, Feb-16, Volume: 353, Issue:3

    p120-catenin contributes to the cadherin-mediated adhesion and aggregation of cells. mu-Calpain was activated and p120-catenin was degraded after 36 h of ischemia in differentiated SH-SY5Y cells. Calpain inhibitors Cbz-Val-Phe-H (MDL28170, 20 microM) and N-acetyl-leucyl-leucyl-norleucinal (ALLN, 20 microM) increased the levels of dephosphorylated p120-catenin, aggregation, and cell survival as detected by reduced LDH release in ischemic cells. However, a proteasome inhibitor lactacystin had no such effects. This is the first report of the calpain-mediated degradation of p120-catenin and an association between the level of dephosphorylated p120-catenin and cell aggregation in ischemic neuronal cells.

    Topics: Acetylcysteine; Calpain; Catenins; Cell Adhesion Molecules; Cell Aggregation; Cell Death; Cell Line, Tumor; Delta Catenin; Dipeptides; Humans; Ischemia; Leupeptins; Neuroblastoma; Phosphoproteins

2007
Rapid degradation of Bim by the ubiquitin-proteasome pathway mediates short-term ischemic tolerance in cultured neurons.
    The Journal of biological chemistry, 2006, Mar-17, Volume: 281, Issue:11

    A previous exposure to a non-harmful ischemic insult (preconditioning) protects the brain against subsequent harmful ischemia (ischemic tolerance). In contrast to delayed gene-mediated ischemic tolerance, little is known about the molecular mechanisms that regulate rapid ischemic tolerance, which occurs within 1 h following preconditioning. Here we have investigated the degradation of the pro-apoptotic Bcl-2 family member Bim as a mechanism of rapid ischemic tolerance. Bim protein levels were reduced 1 h following preconditioning and occurred concurrent with an increase in Bim ubiquitination. Ubiquitinated proteins are degraded by the proteasome, and inhibition of the proteasome with MG132 (a proteasome inhibitor) prevented Bim degradation and blocked rapid ischemic tolerance. Inhibition of p42/p44 mitogen-activated protein kinase activation by U0126 reduced Bim ubiquitination and Bim degradation and blocked rapid ischemic tolerance. Finally, inhibition of Bim expression using antisense oligonucleotides also reduced cell death following ischemic challenge. Our results suggest that following preconditioning ischemia, Bim is rapidly degraded by the ubiquitin-proteasome system, resulting in rapid ischemic tolerance. This suggests that the rapid degradation of cell death-promoting proteins by the ubiquitin-proteasome pathway may represent a novel therapeutic strategy to reduce cell damage following neuropathological insults, e.g. stroke.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Butadienes; Cell Death; Cells, Cultured; Cyclin-Dependent Kinase Inhibitor p21; Immunoblotting; Immunohistochemistry; In Situ Nick-End Labeling; Ischemia; Ischemic Preconditioning; Leupeptins; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neurons; Nitriles; Oligonucleotides, Antisense; Phosphorylation; Propidium; Proteasome Endopeptidase Complex; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Time Factors; Ubiquitin

2006
Calpain and caspase-3 inhibitors reduce infarct size and post-ischemic apoptosis in rat heart without modifying contractile recovery.
    Cellular and molecular biology (Noisy-le-Grand, France), 2003, Volume: 49 Online Pub

    Overactivation of proteases play a key role in the development of ischemia reperfusion (IR) myocardial injury. Calpains are calcium-dependent cysteine proteases and have been implicated in post-ischemic cell death. Moreover, activation of caspases, another family of proteases, represents an important step in the apoptotic process. We investigated the effect of leupeptin and calpain inhibitor-1 (CAI-1), two calpain inhibitors and of a caspase-3 inhibitor, Ac-DEVD-CHO, on functional recovery, myocardial infarct size and apoptosis in isolated rat hearts (Langendorff technique) subjected to 30 min of global ischemia and 120 min of reperfusion. Each inhibitor was added to the perfusion medium 10 min before ischemia and during the first 30 min of reperfusion. IR was associated with mechanical dysfunction and myocardial infarction. Apoptosis induced by this sequence was demonstrated by DNA ladder and TUNEL staining. Whereas leupeptin, CAI-1 or Ac-DEVD-CHO did not modify post-ischemic function, they significantly reduced infarct size and cardiomyocyte positive TUNEL staining. Our findings suggest that calpain and caspase-3 inhibitors may protect heart from the development of cell death induced by IR; this effect could be due, at least in part, to the reduction of apoptosis. However, in our experimental conditions, these inhibitors did not afford improvement of post-ischemic myocardial function.

    Topics: Animals; Apoptosis; Calpain; Caspase 3; Caspase Inhibitors; Caspases; Cysteine Proteinase Inhibitors; Glycoproteins; Heart; Ischemia; Kinetics; L-Lactate Dehydrogenase; Leupeptins; Muscle Contraction; Myocardium; Rats; Reperfusion

2003
Endothelial cells exposed to anoxia/reoxygenation are hyperadhesive to T-lymphocytes: kinetics and molecular mechanisms.
    Microcirculation (New York, N.Y. : 1994), 2000, Volume: 7, Issue:1

    The objectives of this study were to 1) determine the time-course of T-lymphocyte adhesion to monolayers of human umbilical vein endothelial cell (HUVEC) that were exposed to 60 min of anoxia followed by 24 h of reoxygenation, and 2) define the mechanisms responsible for the hyperadhesivity of postanoxic HUVEC to human T-lymphocytes.. Human peripheral blood mononuclear leukocytes were isolated from heparinized peripheral blood. T-lymphocytes were obtained by negative selection using a MACS column. HUVEC monolayers were exposed to anoxia/reoxygenation (A/R), and then reacted with 51Cr -labeled T-lymphocytes in adhesion assays.. A/R leads to an increased adhesion of T-lymphocytes to HUVEC monolayers, with peak responses occurring at 8 h after reoxygenation. This adhesion response was largely attributed to the CD4+ T-cell subset. The hyperadhesivity of A/R-exposed HUVEC was inhibited by monoclonal antibodies directed against either LFA-1, VLA-4, ICAM-1, or VCAM-1, indicating a contribution of these adhesion molecules and their ligands. Moreover, T-cell hyperadhesivity was attenuated by anti- IL-8. consistent with a role for this chemokine in the adhesion response. Protein synthesis inhibitors (actinomycin D and cycloheximide) as well as chemical inhibitors of (and binding ds-oligonucleotides to) NFkappaB and AP-1 significantly attenuated the A/R-induced T-lymphocyte adhesion responses. The kinetics of VCAM-1 on post-anoxic HUVEC correlated with the T-lymphocyte adhesion response.. A/R elicits a T-lymphocyte-endothelial cell adhesion response that involves transcription-dependent surface expression of VCAM-1.

    Topics: Antibodies, Monoclonal; Benzamides; Cell Adhesion; Cell Adhesion Molecules; Cell Hypoxia; Cells, Cultured; Cysteine Endopeptidases; Endothelium, Vascular; Humans; Interleukin-8; Ischemia; Kinetics; Leupeptins; Multienzyme Complexes; NF-kappa B; Oxygen; Proteasome Endopeptidase Complex; Protein Synthesis Inhibitors; Reperfusion Injury; T-Lymphocyte Subsets; Thionucleotides; Time Factors; Transcription Factor AP-1; Tumor Necrosis Factor-alpha; Umbilical Veins; Vascular Cell Adhesion Molecule-1

2000