leupeptins has been researched along with Hyperoxia* in 2 studies
2 other study(ies) available for leupeptins and Hyperoxia
Article | Year |
---|---|
[Effect of the proteasome inhibitor MG-132 on hyperoxic lung injury and its mechanism in rats].
To observe the effects of proteasome inhibitor MG-132 on hyperoxic lung injury in rats and explore the mechanism.. Thirty SD rats were randomly divided into 3 groups, namely the normoxic group, hyperoxic group, and hyperoxic with MG-132 treatment group, and rat models of hyperoxic exposure-induced lung injury were established in the latter two groups. After pathological grading of the lung injury under optical microscope and determination of the wet/dry weight ratio of the lung tissue, the expressions of ubiquitin protein and nuclear factor-kappaB (NF-kappaB) p56 and the activity of proteasome 20S and myeloperoxidase (MPO) were detected. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) expressions in the lung tissue were also detected.. The rats with hyperoxic exposure showed obvious pulmonary edema and increased wet/dry weight ratio of the lung tissue (P<0.01), which were significantly alleviated with MG-132 treatment (P<0.01). Compared with the normoxic group, hyperoxic exposure resulted in significant lung pathologies (P<0.01), which was reduced after MG-132 treatment. Immunohistochemistry and Western blotting demonstrated increased expression of ubiquitin protein in the lung tissue after hyperoxic exposure (P<0.01), which was lowered by MG-132 treatment (P<0.01). Proteasome 20S activity was obviously enhanced in the hyperoxic group (P<0.01) but lowered by MG-132 treatment (P<0.01). Hyperoxic exposure also caused obviously enhanced MPO activity and expressions of NF-kappaB, TNF-alpha, and IL-6 (P<0.01), which were all reduced by MG-132 treatment (P<0.05).. MG-132 alleviates hyperoxic lung injury probably by inhibiting the NF-kappaB/inflammatory factor pathways. Topics: Animals; Animals, Newborn; Cysteine Proteinase Inhibitors; Female; Hyperoxia; Interleukin-6; Leupeptins; Lung Injury; Male; NF-kappa B; Peroxidase; Random Allocation; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha; Ubiquitin | 2009 |
Oxidative stress response results in increased p21WAF1/CIP1 degradation in cystic fibrosis lung epithelial cells.
Lung epithelium in cystic fibrosis (CF) patients is characterized by structural damage and altered repair due to oxidative stress. To gain insight into the oxidative stress-related damage in CF, we studied the effects of hyperoxia in CF and normal lung epithelial cell lines. In response to a 95% O2 exposure, both cell lines exhibited increased reactive oxygen species. Unexpectedly, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 protein was undetectable in CF cells under hyperoxia, contrasting with increased levels of p21WAF1/CIP1 in normal cells. In both cell lines, exposure to hyperoxia led to S-phase arrest. Apoptotic features including nuclear condensation, DNA laddering, Annexin V incorporation, and elevated caspase-3 activity were not readily observed in CF cells in contrast to normal cells. Interestingly, treatment of hyperoxia-exposed CF cells with two proteasome inhibitors, MG132 and lactacystin, restored p21WAF1/CIP1 protein and was associated with an increase of caspase-3 activity. Moreover, transfection of p21WAF1/CIP1 protein in CF cells led to increased caspase-3 activity and was associated with increased apoptotic cell death, specifically under hyperoxia. Taken together, our data suggest that modulating p21WAF1/CIP1 degradation may have the therapeutic potential of reducing lung epithelial damage related to oxidative stress in CF patients. Topics: Acetylcysteine; Annexin A5; Apoptosis; Caspase 3; Caspases; Cells, Cultured; Cyclin-Dependent Kinase Inhibitor p21; Cysteine Proteinase Inhibitors; Cystic Fibrosis; Epithelial Cells; Humans; Hyperoxia; Leupeptins; Lung; Oxidative Stress; Oxygen; Reactive Oxygen Species; S Phase | 2006 |