leupeptins has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 3 studies
3 other study(ies) available for leupeptins and Chemical-and-Drug-Induced-Liver-Injury
Article | Year |
---|---|
TMEM9-v-ATPase Activates Wnt/β-Catenin Signaling Via APC Lysosomal Degradation for Liver Regeneration and Tumorigenesis.
How Wnt signaling is orchestrated in liver regeneration and tumorigenesis remains elusive. Recently, we identified transmembrane protein 9 (TMEM9) as a Wnt signaling amplifier.. TMEM9 facilitates v-ATPase assembly for vesicular acidification and lysosomal protein degradation. TMEM9 is highly expressed in regenerating liver and hepatocellular carcinoma (HCC) cells. TMEM9 expression is enriched in the hepatocytes around the central vein and acutely induced by injury. In mice, Tmem9 knockout impairs hepatic regeneration with aberrantly increased adenomatosis polyposis coli (Apc) and reduced Wnt signaling. Mechanistically, TMEM9 down-regulates APC through lysosomal protein degradation through v-ATPase. In HCC, TMEM9 is overexpressed and necessary to maintain β-catenin hyperactivation. TMEM9-up-regulated APC binds to and inhibits nuclear translocation of β-catenin, independent of HCC-associated β-catenin mutations. Pharmacological blockade of TMEM9-v-ATPase or lysosomal degradation suppresses Wnt/β-catenin through APC stabilization and β-catenin cytosolic retention.. Our results reveal that TMEM9 hyperactivates Wnt signaling for liver regeneration and tumorigenesis through lysosomal degradation of APC. Topics: Adenomatous Polyposis Coli Protein; Animals; beta Catenin; Carbon Tetrachloride; Carcinogenesis; Carcinoma, Hepatocellular; Cell Nucleus; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Gene Knockout Techniques; HEK293 Cells; Hep G2 Cells; Humans; Leupeptins; Liver Neoplasms; Liver Regeneration; Lysosomes; Male; Membrane Proteins; Mice; Mice, Knockout; Proteolysis; Vacuolar Proton-Translocating ATPases; Wnt Signaling Pathway; Xenograft Model Antitumor Assays | 2021 |
Impaired protein adduct removal following repeat administration of subtoxic doses of acetaminophen enhances liver injury in fed mice.
Acetaminophen (APAP) is a widely used analgesic and is safe at therapeutic doses. However, an overdose of APAP is hepatotoxic and accidental overdoses are increasingly common due to the presence of APAP in several combination medications. Formation of protein adducts (APAP-CYS) is central to APAP-induced liver injury and their removal by autophagy is an essential adaptive response after an acute overdose. Since the typical treatment for conditions such as chronic pain involves multiple doses of APAP over time, this study investigated APAP-induced liver injury after multiple subtoxic doses and examined the role of autophagy in responding to this regimen. Fed male C57BL/6J mice were administered repeated doses (75 mg/kg and 150 mg/kg) of APAP, followed by measurement of adducts within the liver, mitochondria, and in plasma, activation of the MAP kinase JNK, and markers of liver injury. The role of autophagy was investigated by treatment of mice with the autophagy inhibitor, leupeptin. Our data show that multiple treatments at the 150 mg/kg dose of APAP resulted in protein adduct formation in the liver and mitochondria, activation of JNK, and hepatocyte cell death, which was significantly exacerbated by inhibition of autophagy. While repeated dosing with the milder 75 mg/kg dose did not cause mitochondrial protein adduct formation, JNK activation, or liver injury, autophagy inhibition resulted in hepatocyte death even at this lower dose. These data illustrate the importance of adaptive responses such as autophagy in removing protein adducts and preventing liver injury, especially in clinically relevant situations involving repeated dosing with APAP. Topics: Acetaminophen; Analgesics, Non-Narcotic; Animals; Autophagy; Cell Death; Chemical and Drug Induced Liver Injury; Dose-Response Relationship, Drug; Hepatocytes; JNK Mitogen-Activated Protein Kinases; Leupeptins; Male; Mice; Mice, Inbred C57BL; Mitochondria; Proteins | 2021 |
The role of PSMB5 in sodium arsenite-induced oxidative stress in L-02 cells.
Endemic arsenism is widely distributed in the world, which can damage multiple organs, especially in skin and liver. The etiology is clear, but the mechanisms involved remain unknown. Ubiquitin-proteasome pathway (UPP) is the main pathway regulating protein degradation of which proteasome subunit beta type-5(PSMB5) plays a dominant role. This paper aims to study the role and mechanism of PSMB5 in sodium arsenite (NaAsO Topics: Arsenites; Cell Survival; Cells, Cultured; Chemical and Drug Induced Liver Injury; Gene Expression; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Humans; Leupeptins; Oxidative Stress; Proteasome Endopeptidase Complex; Proteasome Inhibitors; RNA, Small Interfering; Sodium Compounds; Superoxide Dismutase-1 | 2020 |