leupeptins has been researched along with Adenomatous-Polyposis-Coli* in 1 studies
1 other study(ies) available for leupeptins and Adenomatous-Polyposis-Coli
Article | Year |
---|---|
Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells.
Colorectal cancer (CRC) is the second leading cause of cancer death in the USA. Accumulation of beta-catenin protein is nearly ubiquitous in colon adenomas and cancers, presumably due to mutations in the APC or beta-catenin genes that inhibit proteasome-dependent degradation of beta-catenin protein. Substantial clinical, epidemiological, and animal evidence indicate that sulindac and other non-steroidal anti-inflammatory drugs (NSAIDs) prevent the development of CRC. The mechanisms by which sulindac exerts its potent growth inhibitory effects against colon tumor cells are incompletely understood, but down-regulation of beta-catenin has been suggested as one potential mechanism. The goal of this study was to determine the mechanism of beta-catenin protein down-regulation by sulindac metabolites. Treatment of human colon cancer cell lines with apoptotic concentrations of sulindac metabolites (sulindac sulfide, sulindac sulfone) induced a dose- and time-dependent inhibition of beta-catenin protein expression. Inhibition of proteasome activity with MG-132 partially blocked the ability of sulindac sulfide and sulindac sulfone to inhibit beta-catenin protein expression. Pretreatment with the caspase inhibitor z-VAD-fmk blocked morphological signs of apoptosis as well as caspase cleavage, and also partially prevented beta-catenin degradation by sulindac metabolites. These effects occurred in cells with bi-allelic APC mutation (SW480), with wild-type APC but mono-allelic beta-catenin mutation (HCT116) and in cells that lack expression of either COX-1 or -2 (HCT15). These results indicate that loss of beta-catenin protein induced by sulindac metabolites is COX independent and at least partially due to reactivation of beta-catenin proteasome degradation and partially a result of caspase activation during the process of apoptosis. Topics: Adenomatous Polyposis Coli; Antineoplastic Agents; Apoptosis; beta Catenin; Caspase 3; Caspase Inhibitors; Caspases; Cell Nucleus; Colonic Neoplasms; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Cytoskeletal Proteins; Down-Regulation; Enzyme Inhibitors; Humans; Leupeptins; Multienzyme Complexes; Proteasome Endopeptidase Complex; Signal Transduction; Sulindac; Trans-Activators; Tumor Cells, Cultured | 2003 |