leupeptins has been researched along with Acute-Kidney-Injury* in 3 studies
3 other study(ies) available for leupeptins and Acute-Kidney-Injury
Article | Year |
---|---|
WWP2 ameliorates acute kidney injury by mediating p53 ubiquitylation and degradation.
E3 ubiquitin ligase gene, WWP2, is associated with acute kidney injury (AKI). This research was conducted to explore the role of WWP2 in AKI. AKI cell model was produced in human renal proximal tubular epithelial cell line (HK-2) by ischemia-reperfusion (IR) injury. CCK8 and flow cytometry assay were performed to explore the influence of WWP2 overexpression on cell proliferation and apoptosis of IR-induced HK-2 cells. Quantitative real-time PCR and immunoblotting (IB) were performed to assess the gene and protein expression. Then, the influence of WWP2 on p53 ubiquitylation and degradation was estimated by immunoprecipitation assay. Our data indicated that WWP2 was down-regulated and p53 was up-regulated in IR-induced HK-2 cells. WWP2 overexpression promoted proliferation and inhibited apoptosis of IR-induced HK-2 cells. And WWP2 interacted with p53 and regulated p53 ubiquitylation and degradation. Furthermore, the influence of WWP2 on cell proliferation and apoptosis was rescued by MG132 (proteasome inhibitor) treatment. In conclusion, our work described for the first time the role of WWP2 in AKI, showing that WWP2 ameliorated AKI by mediating p53 ubiquitylation and degradation. Moreover, the study offers some important insights into the occurrence of AKI and WWP2 may be a novel target of AKI treatment. SIGNIFICANCE OF THE STUDY: Our data elaborates that WWP2 has protective effect against AKI by mediating p53 ubiquitylation and degradation. Thus, WWP2 might be a therapeutic target for AKI. Topics: Acute Kidney Injury; Apoptosis; Cell Line; Cell Proliferation; Cell Survival; Flow Cytometry; HEK293 Cells; Humans; Kidney Tubules; Leupeptins; Real-Time Polymerase Chain Reaction; Reperfusion Injury; Tumor Suppressor Protein p53; Ubiquitin-Protein Ligases; Ubiquitination | 2020 |
TSS-Seq analysis of low pH-induced gene expression in intercalated cells in the renal collecting duct.
Metabolic acidosis often results from chronic kidney disease; in turn, metabolic acidosis accelerates the progression of kidney injury. The mechanisms for how acidosis facilitates kidney injury are not fully understood. To investigate whether low pH directly affects the expression of genes controlling local homeostasis in renal tubules, we performed transcription start site sequencing (TSS-Seq) using IN-IC cells, a cell line derived from rat renal collecting duct intercalated cells, with acid loading for 24 h. Peak calling identified 651 up-regulated and 128 down-regulated TSSs at pH 7.0 compared with those at pH 7.4. Among them, 424 and 38 TSSs were ≥ 1.0 and ≤ -1.0 in Log2 fold change, which were annotated to 193 up-regulated and 34 down-regulated genes, respectively. We used gene ontology analysis and manual curation to profile the up-regulated genes. The analysis revealed that many up-regulated genes are involved in renal fibrosis, implying potential molecular mechanisms induced by metabolic acidosis. To verify the activity of the ubiquitin-proteasome system (UPS), a candidate pathway activated by acidosis, we examined the expression of proteins from cells treated with a proteasome inhibitor, MG132. The expression of ubiquitinated proteins was greater at pH 7.0 than at pH 7.4, suggesting that low pH activates the UPS. The in vivo study demonstrated that acid loading increased the expression of ubiquitin proteins in the collecting duct cells in mouse kidneys. Motif analysis revealed Egr1, the mRNA expression of which was increased at low pH, as a candidate factor that possibly stimulates gene expression in response to low pH. In conclusion, metabolic acidosis can facilitate renal injury and fibrosis during kidney disease by locally activating various pathways in the renal tubules. Topics: Acidosis; Acute Kidney Injury; Animals; Fibrosis; Gene Expression Regulation; Humans; Hydrogen-Ion Concentration; Kidney; Kidney Tubules; Leupeptins; Mice; Rats; Renal Insufficiency, Chronic; Signal Transduction; Transcription Initiation Site | 2017 |
RGS4, a GTPase activator, improves renal function in ischemia-reperfusion injury.
Acute kidney dysfunction after ischemia-reperfusion injury (IRI) may be a consequence of persistent intrarenal vasoconstriction. Regulators of G-protein signaling (RGSs) are GTPase activators of heterotrimeric G proteins that can regulate vascular tone. RGS4 is expressed in vascular smooth muscle cells in the kidney; however, its protein levels are low in many tissues due to N-end rule-mediated polyubiquitination and proteasomal degradation. Here, we define the role of RGS4 using a mouse model of IRI comparing wild-type (WT) with RGS4-knockout mice. These knockout mice were highly sensitized to the development of renal dysfunction following injury exhibiting reduced renal blood flow as measured by laser-Doppler flowmetry. The kidneys from knockout mice had increased renal vasoconstriction in response to endothelin-1 infusion ex vivo. The intrinsic renal activity of RGS4 was measured following syngeneic kidney transplantation, a model of cold renal IRI. The kidneys transplanted between knockout and WT mice had significantly reduced reperfusion blood flow and increased renal cell death. WT mice administered MG-132 (a proteasomal inhibitor of the N-end rule pathway) resulted in increased renal RGS4 protein and in an inhibition of renal dysfunction after IRI in WT but not in knockout mice. Thus, RGS4 antagonizes the development of renal dysfunction in response to IRI. Topics: Acute Kidney Injury; Animals; Cysteine Proteinase Inhibitors; Disease Models, Animal; Endothelin-1; Enzyme Activation; GTP-Binding Protein alpha Subunits, Gq-G11; Kidney; Kidney Transplantation; Laser-Doppler Flowmetry; Leupeptins; Ligation; Male; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Nephrectomy; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Renal Circulation; Reperfusion Injury; RGS Proteins; Time Factors; Vasoconstriction; Vasoconstrictor Agents | 2011 |