leukotriene-d4 has been researched along with Hodgkin-Disease* in 5 studies
1 review(s) available for leukotriene-d4 and Hodgkin-Disease
Article | Year |
---|---|
On the biosynthesis and biological role of eoxins and 15-lipoxygenase-1 in airway inflammation and Hodgkin lymphoma.
This mini-review is focused on the enzyme 15-lipoxygenase-1 (15-LO-1) and eoxins in airway inflammatory diseases and Hodgkin lymphoma. Several studies have demonstrated increased expression and activity of 15-LO-1 in the respiratory tissue from asthma patients , indicating a pathophysiological role of this enzyme in airway inflammation. Eoxins were recently identified as pro-inflammatory metabolites of arachidonic acid, formed through the 15-LO-1 pathway, in human eosinophils, mast cells, airway epithelial cells and Hodgkin lymphoma. Mice deficient of 12/15-LO, the ortholog to human 15-LO-1, had an attenuated allergic airway inflammation compared to wild type controls, also indicating a pathophysiological role of this enzyme in respiratory inflammation. The putative therapeutic implications of 15-LO-1 inhibitors in the treatment of asthma, chronic obstructive pulmonary disorder and Hodgkin lymphoma are discussed. Topics: Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Asthma; Eosinophils; Hodgkin Disease; Humans; Inflammation; Leukotriene D4; Leukotrienes; Lung; Mice; Organ Specificity; Pulmonary Disease, Chronic Obstructive; Reed-Sternberg Cells | 2009 |
4 other study(ies) available for leukotriene-d4 and Hodgkin-Disease
Article | Year |
---|---|
Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells.
Classical Hodgkin lymphoma (cHL) has a unique pathological feature characterized by a minority of malignant Hodgkin Reed-Sternberg (H-RS) cells surrounded by numerous inflammatory cells. Cysteinyl-leukotrienes (CysLTs) are produced by eosinophils, macrophages and mast cells in the HL tumor microenvironment. In the present study we have explored the signal transduction pathways leading to leukotriene (LT) D4 induced expression of cytokines in the Hodgkin lymphoma cell line L1236 and KM-H2. Stimulation of L1236 and KM-H2 cells with LTD4 led to a concentration- and time-dependent increase at the transcriptional level of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3) and CCL4. The expression of several transcription factors was induced upon stimulation of Hodgkin cell lines with LTD4. Among these, EGR-1 was required for cytokine production. Inhibition of EGR-1 expression using shEGR-1 transduced by lentivirus led to suppression of the expression of TNF-α and IL-6. The effect of LTD4 on the expression of transcription factors and cytokines were also blocked by the specific CysLT1 receptor antagonist zafirlukast. These results demonstrate that EGR-1 plays a critical role in LTD4-induced cytokine transcription in Hodgkin cell lines. Topics: Cell Line, Tumor; Cytokines; Early Growth Response Protein 1; Gene Expression Regulation, Neoplastic; Hodgkin Disease; Humans; Leukotriene D4; Receptors, Leukotriene; Signal Transduction; Transcription, Genetic | 2015 |
Metabolism of anandamide into eoxamides by 15-lipoxygenase-1 and glutathione transferases.
Human 15-lipoxygenase-1 (15-LO-1) can metabolize arachidonic acid (ARA) into pro-inflammatory mediators such as the eoxins, 15-hydroperoxyeicosatetraenoic acid (HPETE), and 15-hydroxyeicosatetraenoyl-phosphatidylethanolamine. We have in this study investigated the formation of various lipid hydroperoxide by either purified 15-LO-1 or in the Hodgkin lymphoma cell line L1236, which contain abundant amount of 15-LO-1. Both purified 15-LO-1 and L1236 cells produced lipid hydroperoxides more efficiently when anandamide (AEA) or 2-arachidonoyl-glycerol ester was used as substrate than with ARA. Furthermore, L1236 cells converted AEA to a novel class of cysteinyl-containing metabolites. Based on RP-HPLC, mass spectrometry and comparison to synthetic products, these metabolites were identified as the ethanolamide of the eoxin (EX) C(4) and EXD(4). By using the epoxide EXA(4)-ethanol amide, it was also found that platelets have the capacity to produce the ethanolamide of EXC(4) and EXD(4). We suggest that the ethanolamides of the eoxins should be referred to as eoxamides, in analogy to the ethanolamides of prostaglandins which are named prostamides. The metabolism of AEA into eoxamides might engender molecules with novel biological effects. Alternatively, it might represent a new mechanism for the termination of AEA signalling. Topics: Arachidonate 15-Lipoxygenase; Arachidonic Acids; Cell Line, Tumor; Endocannabinoids; Glutathione Transferase; Glycerides; Hodgkin Disease; Humans; Leukotriene D4; Leukotrienes; Lipoxygenase; Polyunsaturated Alkamides | 2012 |
Hodgkin Reed-Sternberg cells express 15-lipoxygenase-1 and are putative producers of eoxins in vivo: novel insight into the inflammatory features of classical Hodgkin lymphoma.
Classical Hodgkin lymphoma has unique clinical and pathological features and tumour tissue is characterized by a minority of malignant Hodgkin Reed-Sternberg cells surrounded by inflammatory cells. In the present study, we report that the Hodgkin lymphoma-derived cell line L1236 has high expression of 15-lipoxygenase-1 and that these cells readily convert arachidonic acid to eoxin C(4), eoxin D(4) and eoxin E(4). These mediators were only recently discovered in human eosinophils and mast cells and found to be potent proinflammatory mediators. Western blot and immunocytochemistry analyses of L1236 cells demonstrated that 15-lipoxygenase-1 was present mainly in the cytosol and that the enzyme translocated to the membrane upon calcium challenge. By immunohistochemistry of Hodgkin lymphoma tumour tissue, 15-lipoxygenase-1 was found to be expressed in primary Hodgkin Reed-Sternberg cells in 17 of 20 (85%) investigated biopsies. The enzyme 15-lipoxygenase-1, however, was not expressed in any of 10 biopsies representing nine different subtypes of non-Hodgkin lymphoma. In essence, the expression of 15-lipoxygenase-1 and the putative formation of eoxins by Hodgkin Reed-Sternberg cells in vivo are likely to contribute to the inflammatory features of Hodgkin lymphoma. These findings may have important diagnostic and therapeutic implications in Hodgkin lymphoma. Furthermore, the discovery of the high 15-lipoxygenase-1 activity in L1236 cells demonstrates that this cell line comprises a useful model system to study the chemical and biological roles of 15-lipoxygenase-1. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Arachidonate 15-Lipoxygenase; Biopsy; Cell Line, Tumor; Child; Child, Preschool; Female; Hodgkin Disease; Humans; Leukotriene D4; Leukotriene E4; Leukotrienes; Lymphoma, Non-Hodgkin; Male; Middle Aged; Reed-Sternberg Cells | 2008 |
Evidence for a pathophysiological role of cysteinyl leukotrienes in classical Hodgkin lymphoma.
Classical Hodgkin lymphoma (cHL) is characterized histologically by a minority of malignant Hodgkin Reed-Sternberg cells surrounded by abundant inflammatory cells, generally believed to be of major importance in the pathophysiology of the disease. Here, we present data that link inflammatory cell-derived arachidonic acid metabolites, the cysteinyl leukotrienes (CysLT), to the pathogenesis of cHL. Two HL cell lines, L1236 and KMH2, were shown to express functional CysLT(1) receptors, responding with a robust calcium signal upon leukotriene (LT) D(4) challenge. LTD(4) stimulated protein release of tumor necrosis factor-alpha, interleukin-6 and -8 by L1236 cells and interleukin-8 by KMH2 cells. Importantly, all these LTD(4)-induced effects were blocked by the CysLT(1) receptor-specific antagonist zafirlukast. Immunohistochemical studies of cHL biopsies and microarray analysis of microdissected cells revealed that the CysLT(1) receptor is expressed also by primary Hodgkin Reed-Sternberg cells. As these cells are surrounded by CysLT-producing eosinophils, macrophages and mast cells, our results suggest the CysLTs as mediators in the pathogenesis of cHL, contributing to the aberrant cytokine network of this lymphoma. Topics: Adolescent; Adult; Aged; Calcium Signaling; Cell Line, Tumor; Child; Child, Preschool; Cysteine; Female; Hodgkin Disease; Humans; Immunohistochemistry; Leukotriene D4; Leukotrienes; Male; Middle Aged; Oligonucleotide Array Sequence Analysis; Polymerase Chain Reaction; Receptors, Leukotriene | 2008 |