leukotriene-d4 and Body-Weight

leukotriene-d4 has been researched along with Body-Weight* in 4 studies

Other Studies

4 other study(ies) available for leukotriene-d4 and Body-Weight

ArticleYear
Differential cardiotoxicity in response to chronic doxorubicin treatment in male spontaneous hypertension-heart failure (SHHF), spontaneously hypertensive (SHR), and Wistar Kyoto (WKY) rats.
    Toxicology and applied pharmacology, 2013, Nov-15, Volume: 273, Issue:1

    Life threatening complications from chemotherapy occur frequently in cancer survivors, however little is known about genetic risk factors. We treated male normotensive rats (WKY) and strains with hypertension (SHR) and hypertension with cardiomyopathy (SHHF) with 8 weekly doses of doxorubicin (DOX) followed by 12weeks of observation to test the hypothesis that genetic cardiovascular disease would worsen delayed cardiotoxicity. Compared with WKY, SHR demonstrated weight loss, decreased systolic blood pressure, increased kidney weights, greater cardiac and renal histopathologic lesions and greater mortality. SHHF showed growth restriction, increased kidney weights and renal histopathology but no effect on systolic blood pressure or mortality. SHHF had less severe cardiac lesions than SHR. We evaluated cardiac soluble epoxide hydrolase (sEH) content and arachidonic acid metabolites after acute DOX exposure as potential mediators of genetic risk. Before DOX, SHHF and SHR had significantly greater cardiac sEH and decreased epoxyeicosatrienoic acid (EET) (4 of 4 isomers in SHHF and 2 of 4 isomers in SHR) than WKY. After DOX, sEH was unchanged in all strains, but SHHF and SHR rats increased EETs to a level similar to WKY. Leukotriene D4 increased after treatment in SHR. Genetic predisposition to heart failure superimposed on genetic hypertension failed to generate greater toxicity compared with hypertension alone. The relative resistance of DOX-treated SHHF males to the cardiotoxic effects of DOX in the delayed phase despite progression of genetic disease was unexpected and a key finding. Strain differences in arachidonic acid metabolism may contribute to variation in response to DOX toxicity.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Blood Pressure; Body Weight; Cardiotoxins; Chromatography, High Pressure Liquid; Doxorubicin; Epoxide Hydrolases; Genetic Predisposition to Disease; Heart Diseases; Kidney; Leukotriene D4; Male; Organ Size; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Troponin T; Ventricular Function, Left

2013
The effects of montelukast on eosinophilic gastroenteritis in a mouse model.
    Immunopharmacology and immunotoxicology, 2013, Volume: 35, Issue:2

    Gastrointestinal eosinophilic (EG) is a rare and heterogeneous condition characterized by patchy or diffuse eosinophilic infiltration of gastrointestinal tissue. Pharmacological study so far has demonstrated that montelukast, an oral leukotriene receptor antagonist, might be considered in patients with this disease. The aim of this study was to evaluate the effect of montelukast on oral ovalbumin (OVA) allergen induced EG inflammation in mice and to suggest some mechanisms underlying this effect. Twenty-four mice were divided into three experimental groups: PBS control, OVA group, and montelukast treated group. The mice were sensitized intraperitoneally and challenged intragastrically with OVA, and were treated with montelukast. Gastrointestinal symptoms were observed after challenged intragastrically with OVA. Eosinophils count in blood, serum OVA specific IgE and gastrointestinal histology were evaluated. Montelukast could significantly reduce the severity of oral allergen-induced eosinophilic inflammation, villous atrophy, and associated symptoms of weight loss associated with diarrhea. Montelukast also could ameliorate OVA-induced gastrointestinal pathological lesions, which was associated with the decrease of IgE and LTD4 levels, and this might be one of the important mechanisms of montelukast that protected gastrointestinal injury from EG. These findings indicated that montelukast therapy may be a novel therapeutic approach for EG and other eosinophil-mediated diseases.

    Topics: Acetates; Animals; Body Weight; Cyclopropanes; Enteritis; Eosinophilia; Eosinophils; Female; Gastric Mucosa; Gastritis; Gastroenteritis; Immunoglobulin E; Inflammation; Jejunum; Leukotriene D4; Mice; Mice, Inbred BALB C; Ovalbumin; Quinolines; Stomach; Sulfides

2013
Effect of 5-lipoxygenase blockade on blood pressure and acetylcholine-evoked endothelium-dependent contraction in aorta from spontaneously hypertensive rats.
    Journal of hypertension, 2006, Volume: 24, Issue:1

    Cysteinyl leukotrienes (cysLT) are pro-inflammatory and vasoactive products suspected to be involved in the regulation of vascular tone and blood pressure in hypertension.. We investigated, in spontaneously hypertensive rats (SHR), the involvement of cysLT in the in-vivo regulation of blood pressure and the in-vitro endothelium-dependent contraction to acetylcholine in isolated aorta.. SHR and Wistar-Kyoto rats (WKY) were orally treated for 3 weeks with either the cysLT biosynthesis inhibitor MK-886 (0.1 mg/ml) or vehicle. After mean arterial blood pressure (MABP) measurement, aortic ring preparations were removed from all groups of animals, and contractions and relaxations were monitored subsequent to stimulation with acetylcholine.. MABP was higher in SHR. Chronic treatment with MK-886 did not alter MABP in either SHR or WKY. In the presence of the N-nitro-L-arginine (L-NA, 100 micromol/l), and on prostaglandin F2alpha (PGF2alpha)-induced tone, acetylcholine evoked concentration-dependent contractions in intact aortic rings from SHR only. Pretreatment with either MK-886 (10 micromol/l), the 5-lipoxygenase (5-LO) inhibitor AA861 (10 micromol/l), or the cysLT1 receptor antagonist MK571 (1 micromol/l) reduced (P < 0.05) acetylcholine-induced contractions in intact aortic rings from SHR only. Acetylcholine-induced contractions were weaker (P < 0.01) in SHR chronically treated with MK-886 than in SHR. In the presence of L-NA, leukotriene (LT) D4 induced greater (P < 0.05) concentration-dependent contractions in aortic rings from SHR than from WKY. MK571 abolished LTD4-evoked contractions.. These data suggested that 5-LO-derived products, through the activation of cysLT1 receptors, could be involved in the endothelium-dependent contraction to acetylcholine in aorta from SHR but not in the regulation of MABP in SHR.

    Topics: Acetylcholine; Animals; Aorta, Thoracic; Arachidonate 5-Lipoxygenase; Benzoquinones; Biopterins; Blood Pressure; Body Weight; Dinoprost; Endothelium, Vascular; Hypertension; Indoles; Leukotriene D4; Lipoxygenase Inhibitors; Male; Membrane Proteins; Nitroarginine; Propionates; Quinolines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Leukotriene; Vasoconstriction

2006
Effects of LTD4 and its specific antagonist L-660,711 in isolated rat hearts with chronic myocardial infarction.
    The American journal of physiology, 1994, Volume: 266, Issue:5 Pt 2

    We investigated the effects of leukotriene (LT) D4 and its novel potent and selective antagonist L-660,711 on isolated rat hearts with chronic myocardial infarction. The left coronary artery was ligated permanently or for 30 or 60 min and followed by reperfusion. Hearts were isolated and perfused in the Langendorff mode 4 days, 4 wk, or 8 wk after the operation. Dose-response curves for LTD4 (12-240 ng/min) on coronary flow were shifted to the left in rats with permanent coronary occlusion for 8 wk or with coronary occlusion for 30 or 60 min and reperfusion for 4 wk. In contrast, dose-response curves were unchanged in rats 4 days after myocardial infarction. L-660,711 shifted dose-response curves for LTD4 on coronary flow to the right in all groups. The negative inotropic and chronotropic effects of LTD4 could be markedly attenuated by L-660,711 in all groups. Our findings suggest that the effect of LTD4 is enhanced in rat hearts with chronic myocardial infarction. L-660,711 effectively antagonized the vasoconstrictor effect of exogenous LTD4.

    Topics: Angiotensin I; Angiotensin II; Animals; Body Weight; Bronchodilator Agents; Coronary Circulation; Heart; Heart Rate; In Vitro Techniques; Leukotriene D4; Male; Myocardial Infarction; Organ Size; Propionates; Quinolines; Rats; Rats, Wistar; Time Factors; Ventricular Function, Left

1994