leukotriene-c4 and Mastitis--Bovine

leukotriene-c4 has been researched along with Mastitis--Bovine* in 2 studies

Other Studies

2 other study(ies) available for leukotriene-c4 and Mastitis--Bovine

ArticleYear
Lipopolysaccharides, cytokines, and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland during experimentally induced mastitis in vivo and in vitro.
    Domestic animal endocrinology, 2015, Volume: 52

    The aim of the study was to determine the effects of lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF), interleukin-1-alpha (IL-1α), and nitric oxide donor (NONOate) on both in vivo and in vitro secretion of prostaglandin (PG)E2, PGF2α, leukotriene (LT)B4, and LTC4 by the bovine mammary gland. In the first experiment, tissues isolated from the teat cavity and lactiferous sinus were treated in vitro with LPS (10 ng/mL), TNF (10 ng/mL), IL-1α (10 ng/mL), NONOate (10(-4) M), and the combination of TNF + IL-1α + NONOate for 4 or 8 h. PGE2 or PGF2α secretion was stimulated by all treatments (P < 0.05) excepting NONOate alone, which did not stimulate PGF2α secretion. Moreover, all factors increased LTB4 and LTC4 secretion (P < 0.05). In the second experiment, mastitis was experimentally mimicked in vivo by repeated (12 h apart) intramammary infusions (5 mL) of (1) sterile saline; (2) 250-μg LPS; (3) 1-μg/mL TNF; (4) 1-μg/mL IL-1α; (5) 12.8-μg/mL NONOate; and (6) TNF + IL-1α + NONOate into 2 udder quarters. All infused factors changed PGE2, 13,14-dihydro,15-keto-PGF2α, and LT concentrations in blood plasma collected from the caudal vena cava, the caudal superficial epigastric (milk) vein, the jugular vein, and the abdominal aorta (P < 0.05). In summary, LPS and other inflammatory mastitis mediators modulate PG and LT secretion by bovine mammary gland in both in vivo and in vitro studies.

    Topics: Animals; Cattle; Cytokines; Dinoprost; Dinoprostone; Female; Interleukin-1alpha; Leukotriene B4; Leukotriene C4; Leukotrienes; Lipopolysaccharides; Mammary Glands, Animal; Mastitis, Bovine; Nitric Oxide; Nitric Oxide Donors; Prostaglandins; Tumor Necrosis Factor-alpha

2015
Lipopolysaccharides, cytokines, and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland epithelial cells.
    Domestic animal endocrinology, 2012, Volume: 43, Issue:4

    The aims of this study were to determine the effects of lipopolysaccharides (LPS), tumor necrosis factor (TNF), interleukin 1 alpha (IL-1α), nitric oxide donor (NONOate), or the combination of TNF + IL-1α + NONOate on the following: (i) secretion of prostaglandin (PG)-F(2α), PGE(2), leukotriene (LT)-B(4), and LTC(4) by epithelial cells of the teat cavity and lactiferous sinus of bovine mammary gland; (ii) messenger RNA (mRNA) transcription of enzymes responsible for arachidonic acid (AA) metabolism (prostaglandin-endoperoxide synthase 2 [PTGS2], prostaglandin E synthase [PTGES], prostaglandin F synthase [PGFS], and arachidonate 5-lipooxygenase [ALOX5]); and (iii) proliferation of the cells. The cells were stimulated for 24 h. Prostaglandins and LT were measured by enzyme immunoassay, mRNA transcription of enzymes was determined by real-time reverse transcription polymerase chain reaction, and the cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. All factors increased PG secretion, but the highest stimulation was observed after TNF and IL-1α (P < 0.001). Tumor necrosis factor, NONOate, and TNF + IL-1α + NONOate increased LTB(4) production (P < 0.01), whereas LTC(4) was increased by LPS, TNF, and IL-1α (P < 0.01). Lipopolysaccharides, TNF, IL-1α, and the reagents combination increased PTGS2, PTGES, and PGFS mRNA transcription (P < 0.01), whereas ALOX5 mRNA transcription was increased only by TNF (P < 0.001). Lipopolysaccharides, TNF, IL-1α, NONOate, and the combination of reagents increased the cell number (P < 0.001). Mediators of acute-clinical Escherichia coli mastitis locally modulate PG and LT secretion by the epithelial cells of the teat cavity and lactiferous sinus, which might be a useful first line of defense for the bovine mammary gland. Moreover, the modulation of PG and LT secretion and the changing ratio of luteotropic (PGE(2), LTB(4)) to luteolytic (PGF(2α), LTC(4)) metabolites may contribute to disorders in reproductive functions.

    Topics: Animals; Arachidonate 5-Lipoxygenase; Arachidonic Acids; Cattle; Cell Proliferation; Cytokines; Dinoprost; Dinoprostone; Epithelial Cells; Female; Hydroxyprostaglandin Dehydrogenases; Interleukin-1alpha; Intramolecular Oxidoreductases; Leukotriene B4; Leukotriene C4; Leukotrienes; Lipopolysaccharides; Mammary Glands, Animal; Mastitis, Bovine; Nitric Oxide; Nitric Oxide Donors; Prostaglandin-E Synthases; Prostaglandin-Endoperoxide Synthases; Prostaglandins; RNA, Messenger; Tumor Necrosis Factor-alpha

2012